JTAM (Jurnal Teori dan Aplikasi Matematika)
http:/journal.ummat.ac.id/index.php/jtam

P-ISSN 2597-7512 | e-ISSN 2614-1175

S emanakasi \/ol, 10, No. 1, January 2026, pp. 1411-1423

The Probability Model of Earthquake Frequency in
the Enggano Segment using Poisson Mixture Models

Siska Yosmar?*, Ramya Rachmawati?, Septri Damayantil, Jose Rizal!
1Department of Mathematics, University of Bengkulu, Indonesia

siskayosmar@unib.ac.id

ABSTRACT

Article History:

Received :25-07-2025
Revised :04-10-2025
Accepted :08-11-2025
Online :01-01-2026

Keywords:

AIC;

BIC;

Earthquake;

Poisson Mixture Models;

An earthquake is a natural disaster that occurs suddenly resulting in numerous
casualties, such as loss of life and property. Bengkulu Province is among the
provinces affected by severe earthquakes. Studies on probability models for the
frequency of earthquake events in Bengkulu Province are still scarce, as outlined in
the 2017 book “Map of Sources and Hazards of Indonesian Earthquakes.” This
research uses Poisson mixture models to build a probability model for the
frequency of earthquake events in the Enggano segment, located in the coastal area
of Bengkulu Province. ..The phases of model building are the model diagnosis
phase, testing the dispersion state relative to the Poisson distribution, testing the
dependence of research data on time variables using the Ljung-Box test, and testing

Poisson Hidden Markov
Models.

the criteria for selecting the best model using the Bayesian Tests Measures of
Information Criterion (BIC) and Akaike Information Criterion (AIC). Annual
earthquake frequency data from January 1, 1971, to December 31, 2022, were
retrieved from the USGS catalog of data on the frequency of major earthquakes with
a magnitude of Mw > 4.40, which occurred a total of 633 times. After completing
the model building phase, the AIC and BIC values for each model were determined
by determining the number of unobserved groups. Both Poisson mixture models
and Poisson hidden Markov models produced the same number of unobserved
groups of 3 groups with AIC=302.91 and BIC=324.38.
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A. INTRODUCTION

Earthquakes are a form of natural disaster that can cause significant casualties and
economic losses (Reid, 2015). The occurrence of earthquakes is caused by the movement of
tectonic plates (an unobservable process) that collide due to the mechanism of convection
currents from the Earth's core (Boden, 2016). Based on the mechanism, there are three types
of movement from one tectonic plate to another convergent, divergent, and transformative.
Indonesia is an earthquake-prone area. This movement is because, geologically speaking,
Indonesia's territory lies at the meeting of three main tectonic plates in the Pacific Ring of Fire,
namely the Indo-Australian Plate, the Eurasian Plate, and the Pacific Plate (Irsyam et al., 2020).
Due to the strong suspicion that there is a mutual connection between motion mechanisms and
plate tectonics, this topic is interesting from various perspectives, such as spatial analysis,
seismic analysis, and mathematical modelling.

Earthquake engineering researchers who study the relationship between earthquake
events and plate tectonic dynamic activity from a mathematical modeling perspective include
(Orfanogiannaki & Papadopoulos, 2014; Yip et al., 2017; Rizal et al., 2018; Rizal et al., 2023). In
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summary, several comments are based on the results of a review of the four articles. The first
clue refers to the seismic data used, where the process of earthquake events (observed process)
is represented by seismic data in the form of earthquake events with a magnitude of Mw = Mc
(Magnitude of Completeness). In contrast the dynamic process of tectonic plates (unobserved
process) is presented in the form of categories or levels, e.g., low, medium, high dynamics or
other categories that describe the behavior of the dynamics of tectonic plates. The second note
refers to the probability model applied, namely a mixture model of the Poisson distribution
with a hidden Markov model (MMT). The MMT model is applied to process parameters from
unobserved state spaces that are assumed to satisfy Markov properties, while the Poisson
distribution is applied to state-dependent processes in unobserved states whose state space
can be observed (Zucchini et al., 2017). The third reference to the algorithm for estimating the
parameters of the Poisson MMT model is the EM (Expectation Maximization) algorithm
(Dempster et al., 1977). The fourth note relates to the fundamental difference between the five
researchers, which lies in the magnitude limit used in calculating earthquake events. This
magnitude limit is determined using the Mc value from the selected catalog data and the area
used as a research object.

In this research, the Enggano segment, which lies in the Sumatra subduction zone, was
selected as the research area. Our motivation to choose this area was based on the results of
studies by Sieh et al. (2007) and McCloskey et al. (2008), where after the major earthquake in
Aceh-Andaman (December 26, 2004, M,, = 9.2) and in Nias-Simeuleu (March 25, 2005, M,, =
8.7), the next major earthquake will be around the Mentawai and Enggano Islands with
magnitude M,, = 8 predicted. The results of this research are confirmed by the geodetic and
paleoseismic calculations carried out by Sieh et al. (2008); Chlieh et al. (2008). The results of
this research show a large earthquake risk with the formation of tsunami waves around the
Mentawai and Enggano island segments. However, studies on earthquake probability models
in these two segments are still scarce, as explicitly stated in the articles (Irsyam et al.,, 2017;
Rizal et al. 2022).

Zucchini et al. (2017) explain that the probability model for the number of occurrences of
an event (e.g., the frequency of earthquakes) can be viewed as a Poisson process that follows
the Poisson distribution, with the characteristics of the sample mean and variance is equal.
However, during implementation, overdispersion conditions regarding the Poisson
distribution often arise, namely that the sample mean is greater than the variance. One of the
factors causing overdispersion is the presence of data groups that are not observed in the
modeled population data. One method to overcome the overdispersion problem is to use a
mixture model. Furthermore, based on the nature of the dependence of these unobserved data
sets, mixture models can be classified into two types, namely independent Poisson mixture
models (PMMs) and dependent Poisson mixture models (PHMMs). Explanations of these two
models can be found in the next two sections.

The paper is organized as follows: In Section methods, we explain the data and the models
used in our work. A general description of PMMs and PHMMs, including the EM algorithm for
estimating the model’s parameters, is presented in two subsections. In the section Results and
Discussion, we report the results of the data analysis and some discussions concerning the
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relevancy of the present results with other studies. In the last section, the conclusion and
suggestions are written.

B. METHODS

Before explaining the models used in this research, namely PMMs and PHMMs, we first
explain the probability function model of Poisson distribution. The theoretical probability
function of the Poisson distribution can be described as follows: Assume X; is a random variable
following the Poisson distribution with the parameter A; > 0, written as X,~Poi(},), then the
probability function of X is written as follows:

(=) Xt
e A
P(xt; A) = —(lt);xt =01,2,. (1)

x¢!

The Poisson distribution is characterized by having the same sample mean and variance.
However, when using them, the properties of the Poisson distribution are often violated. If the
variance value is greater than the average, this condition is called the condition of relative
overdispersion in the Poisson distribution. One approach to overcome this problem of relative
overdispersion is to use a mixture model. Mixture models are designed to account for the nature
of data heterogeneity due to the existence of groups of unobserved data that are part of the
main data. In addition, if the data groups are identified as independent, which shows from the
test results that the main data does not depend on time, then the mixture model of these data
groups is called a Poisson distribution independent mixture model or written as an
independent mixture (Zucchini., et al. (2017).

Independent Mixture Models generally consist of a finite number of groups (m components)
and a Poisson distribution. Let 85, §,, 83, ..., §,, be the probabilities in each m-group and let
p(1),p(2),p(3),...,p(m) be the probabilities of the density function for each group. For a
discrete random variable X; indicating that the random variable has a mixed Poisson
distribution, it is formulated as follows:

pesd) = ) SipiCxo) 2)
i=1

The groups described in equation (2) have the property of being independent of each other.
But in reality, these groups may be interdependent. In this case, Poisson Hidden Markov Models
(PHMMs) can be used as an alternative model. Hidden Markov Models (HMMs) are stochastic
processes that consist of two parts. The first part is the unobserved part of the process
{X;,t € N}, which is assumed to satisfy Markov properties. The second part is the observation
process {C;,t € N}. This process is based on hidden states. The state space X; depends only on
the current state C; and not on previously observed states X;_;. The hidden Markov model
{X.,t,N}is a mixed distribution that depends on X®®and € ®and represents past events from
time 1 to time t, which can be concluded from this simple model with the following equation:
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Pr((CelCE™) = Pr(Ce|Ce—)) ) £ = 234, ... 3)
and
Pr(XX®D,ct) = Pr(X|C,),t €N (4)

If the Markov chain {C,} has m hidden states, it can be concluded that {X,} are PHMMs with
m states. A commonly used method for estimating parameters in HMMs is the Estimation
Maximization Algorithm (EM algorithm) method (Dempster et al, 1977). In the context of
HMMs, the EM algorithm is often referred to as the Baum-Welch algorithm, where the Markov
chain in HMMs is homogeneous and does not have to be stationary. The parameters of the
HMMs estimated by the EM algorithm are the dependent state distribution pi, the transition
probability matrix I' and the initial distribution §. In its application, the EM algorithm requires
tools, namely forward chances and backward chances, both of which can be used to predict
states (Zucchini et al. 2017). The forward probability a; for t = 1,2, ..., T is defined as a row
vector:

a; = SP(x))I'P(x,) ...P(x;) = 8P(x,) 1_[ I'P(xs) (5)

The value 6 is the initial distribution of the Markov chain. Based on the definition of forward
odds in equation (5),fort = 1, 2, ..., T — 1. Next is the backward probability ; fort =1, 2, ..., T
which is defined as a row vector:

Bt = TP(x¢41)TP(Xey2) . TP(x7)1" = ( 1_[ FP(X5)> 1 (6)

s=t+1

where for the value t = T, Bt = 1. From equations (5) and (6), we get :

o:(j)Be()

. )
Pr(C, =j|X™) =xM = L (7)

and

_ %-1()VjiPr(xe)Be (k)

Pr(Ciy =}, Co) = k|(X™ = xT) 3
T

(8)

In HMMs, especially where the sequence of Markov chain states is not observed, there may
be missing data (missing values) in the sequence, resulting in incomplete data. The EM
algorithm is an iterative method used to calculate the maximum likelihood estimate for
incomplete data, thus obtaining complete log-likelihood data. In each iteration of the EM
algorithm, there are two stages, namely the expectation stage or E stage (E-step) and the
maximization stage or M stage (M-step). After estimating the parameters of several possible
models to be applied, the model that best fits the modeled earthquake data is determined. In
this study, we used two criteria in selecting the best model, namely the Akaike Information
Criterion (AIC) and the Bayesian Information Criteria (BIC) (Kuha 2004). The formula for these
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two criteria is explained in the next paragraph. The formula for AIC can be calculated using the
equation:
AIC = 2K — 2log(Maximum Likelihood) 9

The BIC value is now formulated as follows:
BIC = —2log(Maximum Likelihood) + klog(n) (10)

where n is the amount of data and k is the number of parameters to be estimated. As a reminder,
the best model is determined using the smallest AIC and BIC values.

C. RESULT AND DISCUSSION

The seismic data used in this study are annual earthquake frequency data that occurred in
the Enggano segment with observation periods from January 1, 1971, to December 31, 2022.
These data were obtained from the United States Geological Survey (USGS) Earthquake Data
Catalog. It contains three types of earthquake events, namely pioneer, main, and aftershock
events, a total of 11,613 earthquake data, of which 633 are main earthquake events. Using this
data, a process was then carried out to tabulate the frequency of earthquake events with a
magnitude M,, > 4.40. Descriptive statistics from research data are briefly presented below:

Table 1. Descriptive statistics on the number of earthquake events

Mean Median Variance Maks Min Skewness Kurtosis
12,17 12,00 38,18 26 2 0,15 2,21

Based on Table 1, two aspects can be explained as follows. The first aspect refers to the
comparison between the variance value and the mean, where the variance value is 38,18 and
the mean is 12,17, so it can be concluded that the variance value is larger than the mean. In
other words, there is an overdispersion of the Poisson distribution in the data on the frequency
of earthquakes in the Enggano segment. In addition, the second aspect is related to the
skewness value and the kurtosis value, where the skewness value is greater than 0 and the
kurtosis value is less than 3. From these two values, it follows that the data on the frequency of
earthquake events in the Enggano segment is not distributed symmetrically or more precisely
as a function of odds and tends to dominate on the right side. Based on the results of descriptive
statistical analysis of the data, it can be concluded that the data on earthquake events in the
Enggano segment are overdispersed.

One way to overcome the condition of overdispersion of data is to apply a mixed model
(independent and dependent) of the Poisson distribution. The selection of the two models is
adapted to the properties of the data. If the research data depends on time, the chosen model is
a dependent mixed model, using Poisson Hidden Markov Models (PHMMs). While the data is
not dependent on time, the Poisson Mixture Models (PMMs) is preferred. In this research, the
research method for testing the data dependence on time uses the Ljung-Box test (Ljung and
Box 1978).

The Ljung-Box test is performed to check whether the modeled data is time-dependent. For
time-dependent data, the p — value < «; otherwise the data is not time-dependent if the p —
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value > a. In this study, the a used was 0,05. The Ljung-Box test hypothesis is as follows:
Hy: p?(h) = 0, which means that the data does not depend on time, while H;: p?(h) # 0, which
means that the Data depends on time. The statistics suggested by Ljung and Box are:

K 2
0 =n(n+2)z<nrf k) (11)
k=1

The description of Equation (11) is as follows: n is the number of observation data, K is the

number of selected delays, and r? is the sample correlation. The test criteria for the Ljung-Box
test are: If the hypothesis is tested: p — value < a, then H; is rejected. The p-value obtained
from the Ljung-Box test for the modeled data is 2,02 x 1073, This value is smaller than the
selected « value, so it can be concluded that the data on the frequency of earthquake events in
the Enggano segment is time-dependent. Based on these results, the Poisson distribution
mixture model is the more suitable distribution model.

In the implementation phase of the Poisson distribution mixture model, a trial-and-error
approach (repetitive method) is generally used from different possible states. In this study, the
best model was sought from three models. The three models are hidden/unobserved state
models (m), namely (2, 3, 4). The criteria for selecting a multistate model are based on the
smallest BIC and AIC values. The next step to determine the input parameters is to take the
value 4 = (44, ..., 4,), namely the parameter value for the average number of earthquake
events per year, and the initial probability of occurrence & = (64, ..., 6,)- The first step in finding
the parameter values is to create a frequency distribution table from data on the number of
earthquakes, where the number of classes in the table is determined by the number of hidden
conditions.

In this study, values ranging from 2 to 26 for the number of earthquakes were used to divide
the intervals for each class using Rstudio. In this article, we will only explain the case m=3. Given
three hidden states with an average number of earthquakes 4 = (14, 4;, 13), then there are 3
classes with interval lengths for each class. Calculate the value 4 = (44, 4,, 13) by inputting
earthquake frequency data into each hidden state group based on the sample space. Parameter
6 = (64, 0,,83) is the initial probability from hidden state 1 to hidden state 3 obtained by
calculating the number of frequencies in each group divided by the total frequency of the hidden
state. The estimated parameters A and & for the case of 3 hidden states can be seen in the
following Table 2.

Table 2. Results of PMM parameter calculation for hidden conditions in case 3

Amount Frequency Hidden Events m=1 m =2 m=3
1 6 1 6 - -

(|| (W
NeleolieccRiecHENERNERN]
[EEN) SN RN SR SR U FEN
O |0 (0[N |IN(N(
\
.
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Amount Frequency Hidden Events m=1 m =2 m=3
9 9 1 9 - -
10 9 1 9 - -
43 18 3 - - 18
44 18 3 - - 18
45 19 3 - - 19
46 19 3 - - 19
47 21 3 - - 21
48 22 3 - - 22
49 22 3 - - 22
50 22 3 - - 22
51 24 3 - - 24
52 26 3 - - 26

f 52 18 9 25
A 9,11 3,22 17,60
é 0,35 0,17 0,48

After obtaining the estimated values of 4 and é over a period per year, it can be declared
that the first hidden state has an average number of earthquakes of 9,11 events with an initial
occurrence probability of 0,35 for the average occurrence of the second hidden state of 3,22
with an initial probability of 0,17 and for the average occurrence in the third hidden state of
17,60 with an initial probability of 0,48. Next, an iteration process is performed to obtain
convergent model parameter values. The results of Poisson Mixture Models modeling for
multiple values of m are shown in Table 3.

Table 3. Poisson Mixture Model Results on Earthquake Data

Model i A ) -1k Iteration AIC BIC

m=1 1 12.17 1 197.62 2 397.24 399.19
1 15.42 0.63

m=2 5 6.53 037 167.63 22 341.26 347.11
1 9.11 0.35

m=3 2 3.22 0.17 165.33 55 339.66 340.41
3 17.60 0.48
1 5.53 0.33
2 11.38 0.31

m=4 3 16.92 0.25 165.32 89 344.66 358.32
4 22.83 0.12

Based on a comparison of the AIC and BIC values for the m values that were tested, the
smallest value was in the model for m=3 with an AIC value = 339.66 and a BIC value = 340.41.
Furthermore, research data modeling using PHMMs is also studied, where the parameters are
estimated using the EM algorithm. The following are the steps taken along with the processed
results to obtain the three models for estimating the number of earthquakes and determining
the best model.
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At this stage of determining the input parameters, we calculate the value 4 = (44, ..., 4,,),
namely the parameter value of the average number of earthquake events per year, with the
initial probability of the event & = (4, ...,5,) and the hidden state transition probability
matrix I' size (n x n). The initial step finding the parameter values is to create a frequency
distribution table from data on the number of earthquakes with the number of classes in the
table determined by the number of hidden conditions that will be provided. In this study, values
in the range 2 to 26 for the number of earthquakes were taken to divide the intervals into each
class uniformly. For example, in a model with m=3, if given three hidden states with an average
number of earthquakes A = (44, 1,, 13), then there are three classes with interval lengths for
each class.

. range 24
¢ = minimum value + ——— =2+ —=10
many classes 3

Based on the c value above, for the sample space the number of earthquakes in hidden state
1is{2, 3,4, .. 10} out of {11, 12, 13, .., 18} in hidden state 2 and {19, 20, 21, ..., 26} enter the
hidden state 3. To calculate the value 4 = (1;,4,,43) isto enter earthquake frequency data into
each group of hidden states based on the sample space. Parameter § = (;, §,, §3) is the initial
probability of hidden state 1 to hidden state 3, obtained by calculating the number of
frequencies in each group divided by the overall frequency of hidden states. The results of
calculating the parameters A and é for the case of 3 hidden states can be seen in the table below:

Table 4. Results of PHMMs parameter calculation for hidden conditions in case 3

Amount Frequensi Hidden events m=1 m =2 m=3
1 2 1 2 - -
2 2 1 2 - -
3 2 1 2 - -
4 3 1 3 - -
5 4 1 4 - -
6 3 1 3 - -
7 3 1 3 - -
8 7 1 7 - -
9 8 1 8 - -
10 8 1 8 - -
42 14 2 - 14 -
43 14 2 - 14 -
44 24 3 - - 3
45 14 2 - 2 -
46 10 1 1 - -
47 19 3 - - 19
48 22 3 - - 22
49 21 3 - - 21
50 17 2 - 17 -
51 15 2 - 15 -
52 22 3 - - 22

I~
o))
N
N
w
NS}
—_
(o)
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Amount Frequensi Hidden events m=1 m =2 m=3
A 6,00 14,24 19,25
8 0,44 0,40 0,15

After obtaining the values of 4 and §, t was found that the first hidden state had an average
number of earthquakes of 6,00 events with an initial probability of occurrence of 0,44, for the
average occurrence in the second hidden state of 14,24 with a The initial probability is 0,40 and
for the average event in the third condition is 19,25, where the initial probability of the event
is 0,15. Parameter value I', namely the probability matrix for the hidden state transition, where
the elements in the matrix are obtained by calculating the frequency of each possible hidden
state transition, which is then divided by the total number of each row in the hidden state. There
are three possible hidden state transitions, shown in the following Table 5:

Table 5. Probabilities in 3 hidden states

Unobservable state 1 2 3
1 17/23 4/23 2/23
2 5/21 12/21 4/21
3 0/7 5/7 2/7

so we get the transition probability matrix for the three hidden states as follows:

0.24 0.57 0.19

0.74 0.17 0.09
r =
0 0.71 0.29

Based on the above transition probability matrix, it can be interpreted that if this period is
in the first hidden state, the probability that the frequency of future earthquakes will be in the
first hidden state is 0.74. When this period is in hidden state 1, the probability that the
frequency of earthquakes in the future will be in hidden state 2 is 0.17, and when it is in hidden
state 1, the probability that the frequency of earthquakes in the future will be like this in the
hidden state 3 is 0.09 and so on. The results of the PHMM modelling can also be seen in Table
6.

Table 6. Input parameters A, § and I' for each PHMMs

r
m i A 1)) 1 > 3 2
m=2 1 8.219 0.615 0.750 0.250 - -
2 18.500 0.385 0.368 0.632 - -
1 6.000 0.442 0.739 0.174 0.087 -
m=3 2 14.238 0.404 0.238 0.571 0.190 -
3 19.250 0.154 0.000 0.714 0.286 -
1 5.529 0.327 0.588 0.235 0.118 0.059
m=4 2 11.375 0.308 0.313 0.438 0.125 0.125
3 16.923 0.205 0.077 0.308 0.462 0.154
4 22.833 0.115 0.000 0.200 0.600 0.200
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Next, perform an iterative process on the initial values of the parameters 4,8 and I for
each model using the EM (Expectation Maximization Algorithm) algorithm. After the parameter
estimation results are obtained, the next step is to compare the AIC and BIC values, where the
smallest AIC and BIC values are the best models for estimating the number of earthquakes. The
results of the parameter estimation calculation process (A, 8, and I') with hidden states m =
(2,3,4) can be seen in Table 7.

Table 7. EM algorithm estimation parameters for each PHMMs

. - - f
m Ik AIC BIC i i — > . Z
1 567 1 084 016 i
m=2 15512 32024 33000 — a0 o
1 280 1 086 014 000
m=3 14045  302.91 32438 2 966 0 000 095 005
3 1675 0
1 279 1 086 014 000 000
2 964 0 000 095 005 000
m=4 14020 31840 35546 ST 3oT0T 0 000 000 070 030
4 2022 0 000 000 100 000

Based on Table 7, the estimated values using the EM algorithm in PHMMs, it can be seen
that the smallest AIC and BIC values (marked with bold numbers) are in three hidden states,
namely with AIC value = 302, 91 and BIC value = 324.38. So, it can be said that the 3 hidden
states model is the best compared to the m=2 and m=4 models. After the model building phase
was completed and the AIC and BIC values were determined for each model, PMMs, and
PHMMs, both models resulted in the identification of the same number of unobserved groups,
namely 3 groups. This can be seen by looking at the smallest AIC and BIC values of each model.
Furthermore, for the case of many triplets, it was found that the PHMMs model had the smallest
AIC and BIC values compared to PMMs. Therefore, the model chosen for the seismic data
modeled in this study follows the probability distribution of PHMMs with a number of
unobserved groups of 3. The following formulation of the density probability function of
PHMMs for 3 hidden states is as follows:

p(x) = ) 6;Poi(4;)
2
p(X;) = ((0.44)P0i(6.00) + (0.40)Poi(14.24) + (0.15)P0i(19.25))

with the transition probability matrix of the unobservable data process is

0.24 0.57 0.19

0.74 0.17 0.09
I'= .
0.00 0.71 0.29
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D. CONCLUSION AND SUGGESTIONS

We successfully applied two types of Poisson distribution (Poi (1)), mixed models, namely
the independent Poisson mixed model and the dependent Poisson model, to build a
probabilistic model that uses historical data on the frequency of earthquake events from
January 1st 1971, to December 31, 2022, in the Enggano segment of the Sumatra subduction
zone. The estimation technique for the implemented probability model parameters uses the
expectation and maximization algorithm, while the data used is data on the frequency of
occurrence of major earthquakes with magnitude M,, > 4.40 obtained from the United States
Geological Survey (USGS).

The modeled empirical data has an average value of M,, = 12.17 with a variance of
M,, =38.18. In other words, there is an overdispersion condition in the research data because
the variance value is larger than the sample average. Based on the results of testing the
dependence of research data on time using the Ljung-Box test, in which the p-value (2.02x10->)
of the test statistic from the Ljung-Box test is less than the selected « -Significance is level value,
namely 0.05, then evidence was found of the dependence of the frequency of earthquakes each
year on time. From these two test results, it can be concluded that the probability model that
fits the modeled data is a dependent mixed model of Poisson distribution, namely m-state
Poisson Hidden Markov Models (PHMMSs). To determine the number of states (m) from the m-
state PHMMs model, we implemented a trial-and-error technique for multiple values m=2,3 and
4. Based on the model selection criteria using the smallest AIC and BIC With these values, we
obtained the number of unobserved states or groups. The modeled data is 3 states, namely
p(x) = (044) Poi(6.00) + (0.40) Poi(14.24) + (0.15) Poi(19.25), with the transition
probability matrix of the unobservable process is as follows:

0.24 0.57 0.19

0.74 0.17 0.09
r= .
0.00 0.71 0.29

In most coastal areas of Indonesia, there is a need for study results in the field of disaster
risk reduction, especially modeling of earthquake events. Therefore, it is hoped that the results
of this research can provide an additional contribution to complement the results of previous
studies conducted by earthquake researchers in the Enggano segment to map the degree of
earthquake vulnerability in this segment. Specifically, this article describes of unobserved
behavior (dynamics of tectonic plates) based on selected models, however this study is still
being carried out on a very small scale by earthquake researchers.
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