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 An earthquake is a natural disaster that occurs suddenly resulting in numerous 
casualties, such as loss of life and property. Bengkulu Province is among the 
provinces affected by severe earthquakes. Studies on probability models for the 
frequency of earthquake events in Bengkulu Province are still scarce, as outlined in 
the 2017 book “Map of Sources and Hazards of Indonesian Earthquakes.” This 
research uses Poisson mixture models to build a probability model for the 
frequency of earthquake events in the Enggano segment, located in the coastal area 
of Bengkulu Province. ..The phases of model building are the model diagnosis 
phase, testing the dispersion state relative to the Poisson distribution, testing the 
dependence of research data on time variables using the Ljung-Box test, and testing 
the criteria for selecting the best model using the Bayesian Tests Measures of 
Information Criterion (BIC) and Akaike Information Criterion (AIC). Annual 
earthquake frequency data from January 1, 1971, to December 31, 2022, were 
retrieved from the USGS catalog of data on the frequency of major earthquakes with 
a magnitude of Mw ≥ 4.40, which occurred a total of 633 times. After completing 
the model building phase, the AIC and BIC values for each model were determined 
by determining the number of unobserved groups. Both Poisson mixture models 
and Poisson hidden Markov models produced the same number of unobserved 
groups of 3 groups with AIC=302.91 and BIC=324.38. 
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A. INTRODUCTION  

Earthquakes are a form of natural disaster that can cause significant casualties and 

economic losses (Reid, 2015). The occurrence of earthquakes is caused by the movement of 

tectonic plates (an unobservable process) that collide due to the mechanism of convection 

currents from the Earth's core (Boden, 2016). Based on the mechanism, there are three types 

of movement from one tectonic plate to another convergent, divergent, and transformative. 

Indonesia is an earthquake-prone area. This movement is because, geologically speaking, 

Indonesia's territory lies at the meeting of three main tectonic plates in the Pacific Ring of Fire, 

namely the Indo-Australian Plate, the Eurasian Plate, and the Pacific Plate (Irsyam et al., 2020). 

Due to the strong suspicion that there is a mutual connection between motion mechanisms and 

plate tectonics, this topic is interesting from various perspectives, such as spatial analysis, 

seismic analysis, and mathematical modelling. 

Earthquake engineering researchers who study the relationship between earthquake 

events and plate tectonic dynamic activity from a mathematical modeling perspective include 

(Orfanogiannaki & Papadopoulos, 2014; Yip et al., 2017; Rizal et al., 2018; Rizal et al., 2023). In 
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summary, several comments are based on the results of a review of the four articles. The first 

clue refers to the seismic data used, where the process of earthquake events (observed process) 

is represented by seismic data in the form of earthquake events with a magnitude of 𝑀𝑤 ≥ 𝑀𝑐 

(Magnitude of Completeness). In contrast the dynamic process of tectonic plates (unobserved 

process) is presented in the form of categories or levels, e.g., low, medium, high dynamics or 

other categories that describe the behavior of the dynamics of tectonic plates. The second note 

refers to the probability model applied, namely a mixture model of the Poisson distribution 

with a hidden Markov model (MMT). The MMT model is applied to process parameters from 

unobserved state spaces that are assumed to satisfy Markov properties, while the Poisson 

distribution is applied to state-dependent processes in unobserved states whose state space 

can be observed (Zucchini et al., 2017). The third reference to the algorithm for estimating the 

parameters of the Poisson MMT model is the EM (Expectation Maximization) algorithm 

(Dempster et al., 1977). The fourth note relates to the fundamental difference between the five 

researchers, which lies in the magnitude limit used in calculating earthquake events. This 

magnitude limit is determined using the 𝑀𝑐 value from the selected catalog data and the area 

used as a research object. 

In this research, the Enggano segment, which lies in the Sumatra subduction zone, was 

selected as the research area. Our motivation to choose this area was based on the results of 

studies by Sieh et al. (2007) and McCloskey et al. (2008), where after the major earthquake in 

Aceh-Andaman (December 26, 2004, 𝑀𝑤 = 9.2) and in Nias-Simeuleu (March 25, 2005, 𝑀𝑤 =

8.7 ), the next major earthquake will be around the Mentawai and Enggano Islands with 

magnitude 𝑀𝑤 ≥ 8 predicted. The results of this research are confirmed by the geodetic and 

paleoseismic calculations carried out by Sieh et al. (2008); Chlieh et al. (2008). The results of 

this research show a large earthquake risk with the formation of tsunami waves around the 

Mentawai and Enggano island segments. However, studies on earthquake probability models 

in these two segments are still scarce, as explicitly stated in the articles (Irsyam et al., 2017; 

Rizal et al. 2022).  

Zucchini et al. (2017) explain that the probability model for the number of occurrences of 

an event (e.g., the frequency of earthquakes) can be viewed as a Poisson process that follows 

the Poisson distribution, with the characteristics of the sample mean and variance is equal. 

However, during implementation, overdispersion conditions regarding the Poisson 

distribution often arise, namely that the sample mean is greater than the variance. One of the 

factors causing overdispersion is the presence of data groups that are not observed in the 

modeled population data. One method to overcome the overdispersion problem is to use a 

mixture model. Furthermore, based on the nature of the dependence of these unobserved data 

sets, mixture models can be classified into two types, namely independent Poisson mixture 

models (PMMs) and dependent Poisson mixture models (PHMMs). Explanations of these two 

models can be found in the next two sections. 

The paper is organized as follows: In Section methods, we explain the data and the models 

used in our work. A general description of PMMs and PHMMs, including the EM algorithm for 

estimating the model’s parameters, is presented in two subsections. In the section Results and 

Discussion, we report the results of the data analysis and some discussions concerning the 
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relevancy of the present results with other studies. In the last section, the conclusion and 

suggestions are written.  

 

B. METHODS 

Before explaining the models used in this research, namely PMMs and PHMMs, we first 

explain the probability function model of Poisson distribution. The theoretical probability 

function of the Poisson distribution can be described as follows: Assume Xt is a random variable 

following the Poisson distribution with the parameter λt > 0, written as Xt~Poi(λt), then the 

probability function of Xt is written as follows: 

 

𝑝(𝑥𝑡; 𝜆𝑡) =
𝑒(−𝜆𝑡)(𝜆𝑡)𝑥𝑡

𝑥𝑡!
, 𝑥𝑡 = 0,1,2, .. (1) 

   

The Poisson distribution is characterized by having the same sample mean and variance. 

However, when using them, the properties of the Poisson distribution are often violated. If the 

variance value is greater than the average, this condition is called the condition of relative 

overdispersion in the Poisson distribution. One approach to overcome this problem of relative 

overdispersion is to use a mixture model. Mixture models are designed to account for the nature 

of data heterogeneity due to the existence of groups of unobserved data that are part of the 

main data. In addition, if the data groups are identified as independent, which shows from the 

test results that the main data does not depend on time, then the mixture model of these data 

groups is called a Poisson distribution independent mixture model or written as an 

independent mixture (Zucchini., et al. (2017). 

Independent Mixture Models generally consist of a finite number of groups (m components) 

and a Poisson distribution. Let 𝛿1, 𝛿2, 𝛿3, … , 𝛿𝑚  be the probabilities in each m-group and let 

𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑚)  be the probabilities of the density function for each group. For a 

discrete random variable Xt  indicating that the random variable has a mixed Poisson 

distribution, it is formulated as follows: 

 

𝑝(𝑥𝑡; 𝜆𝑡) = ∑ 𝛿𝑖𝑝𝑖(𝑥𝑡)

𝑚

𝑖=1

 (2) 

 

The groups described in equation (2) have the property of being independent of each other. 

But in reality, these groups may be interdependent. In this case, Poisson Hidden Markov Models 

(PHMMs) can be used as an alternative model. Hidden Markov Models (HMMs) are stochastic 

processes that consist of two parts. The first part is the unobserved part of the process 

{X𝑡, 𝑡 ∈ ℕ}, which is assumed to satisfy Markov properties. The second part is the observation 

process {𝐶𝑡, 𝑡 ∈ ℕ}. This process is based on hidden states. The state space 𝑋𝑡 depends only on 

the current state  C𝑡  and not on previously observed states X𝑡−1. The hidden Markov model 

{𝑋𝑡, 𝑡, ℕ} is a mixed distribution that depends on 𝑋(𝑡)and 𝐶(𝑡)and represents past events from 

time 1 to time t, which can be concluded from this simple model with the following equation: 
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Pr ((Ct|C(t−1)) = Pr(Ct|C(𝑡−1))) , t = 2,3,4, … (3) 

and 

Pr(Xt|X(t−1), Ct) = Pr(Xt|C𝑡), t ∈ ℕ (4) 

 

If the Markov chain {Ct} has m hidden states, it can be concluded that  {Xt} are PHMMs with 

m states. A commonly used method for estimating parameters in HMMs is the Estimation 

Maximization Algorithm (EM algorithm) method (Dempster et al., 1977). In the context of 

HMMs, the EM algorithm is often referred to as the Baum-Welch algorithm, where the Markov 

chain in HMMs is homogeneous and does not have to be stationary. The parameters of the 

HMMs estimated by the EM algorithm are the dependent state distribution pi, the transition 

probability matrix Г and the initial distribution δ. In its application, the EM algorithm requires 

tools, namely forward chances and backward chances, both of which can be used to predict 

states (Zucchini et al. 2017). The forward probability αt  for t = 1,2, … , T is defined as a row 

vector: 

αt = δP(xi)Г𝐏(x2) … Г𝐏(xt) = 𝛅𝐏(x1) ∏ Г𝐏(xs)

𝐭

s=2

 (5) 

 

The value δ is the initial distribution of the Markov chain. Based on the definition of forward 

odds in equation (5), for t = 1, 2, … , T − 1. Next is the backward probability βt for t = 1, 2, … , T 

which is defined as a row vector: 

 

βt =  Г𝐏(xt+1)Г𝐏(xt+2) … Г𝐏(xT)𝟏′ = ( ∏ Г𝐏(xs)

t

s=t+1

) 𝟏′ (6) 

 

where for the value t = T, BT = 1. From equations (5) and (6), we get : 

 

Pr(Ct = j|X(T)) = x(T) =
αt(j)βt(j)

LT
 (7) 

and 

Pr(Ct−1 = j, Ct) = k|(X(T) = xT) =
αt−1(j)γjkpk(xt)βt(k)

LT
 (8) 

 

In HMMs, especially where the sequence of Markov chain states is not observed, there may 

be missing data (missing values) in the sequence, resulting in incomplete data. The EM 

algorithm is an iterative method used to calculate the maximum likelihood estimate for 

incomplete data, thus obtaining complete log-likelihood data. In each iteration of the EM 

algorithm, there are two stages, namely the expectation stage or E stage (E-step) and the 

maximization stage or M stage (M-step). After estimating the parameters of several possible 

models to be applied, the model that best fits the modeled earthquake data is determined. In 

this study, we used two criteria in selecting the best model, namely the Akaike Information 

Criterion (AIC) and the Bayesian Information Criteria (BIC) (Kuha 2004). The formula for these 
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two criteria is explained in the next paragraph. The formula for AIC can be calculated using the 

equation: 

AIC = 2K − 2log(Maximum Likelihood) (9) 

 

The BIC value is now formulated as follows: 

 

BIC = −2 log(Maximum Likelihood) + k log(n) (10) 

 

where n is the amount of data and k is the number of parameters to be estimated. As a reminder, 

the best model is determined using the smallest AIC and BIC values. 

 

C. RESULT AND DISCUSSION 

The seismic data used in this study are annual earthquake frequency data that occurred in 

the Enggano segment with observation periods from January 1, 1971, to December 31, 2022. 

These data were obtained from the United States Geological Survey (USGS) Earthquake Data 

Catalog. It contains three types of earthquake events, namely pioneer, main, and aftershock 

events, a total of 11,613 earthquake data, of which 633 are main earthquake events. Using this 

data, a process was then carried out to tabulate the frequency of earthquake events with a 

magnitude 𝑀𝑤 ≥  4.40. Descriptive statistics from research data are briefly presented below: 

 

Table 1. Descriptive statistics on the number of earthquake events 

Mean Median Variance Maks Min Skewness Kurtosis 
12,17 12,00 38,18 26 2 0,15 2,21 

 

Based on Table 1, two aspects can be explained as follows. The first aspect refers to the 

comparison between the variance value and the mean, where the variance value is 38,18 and 

the mean is 12,17, so it can be concluded that the variance value is larger than the mean. In 

other words, there is an overdispersion of the Poisson distribution in the data on the frequency 

of earthquakes in the Enggano segment. In addition, the second aspect is related to the 

skewness value and the kurtosis value, where the skewness value is greater than 0 and the 

kurtosis value is less than 3. From these two values, it follows that the data on the frequency of 

earthquake events in the Enggano segment is not distributed symmetrically or more precisely 

as a function of odds and tends to dominate on the right side. Based on the results of descriptive 

statistical analysis of the data, it can be concluded that the data on earthquake events in the 

Enggano segment are overdispersed.  

One way to overcome the condition of overdispersion of data is to apply a mixed model 

(independent and dependent) of the Poisson distribution. The selection of the two models is 

adapted to the properties of the data. If the research data depends on time, the chosen model is 

a dependent mixed model, using Poisson Hidden Markov Models (PHMMs). While the data is 

not dependent on time, the Poisson Mixture Models (PMMs) is preferred. In this research, the 

research method for testing the data dependence on time uses the Ljung-Box test (Ljung and 

Box 1978). 

The Ljung-Box test is performed to check whether the modeled data is time-dependent. For 

time-dependent data, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼; otherwise the data is not time-dependent if the 𝑝 −
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𝑣𝑎𝑙𝑢𝑒 > 𝛼. In this study, the 𝛼 used was 0,05.  The Ljung-Box test hypothesis is as follows: 

𝐻0: 𝜌2(ℎ) = 0, which means that the data does not depend on time, while 𝐻1: 𝜌2(ℎ) ≠ 0, which 

means that the Data depends on time. The statistics suggested by Ljung and Box are: 

 

𝑄 = 𝑛(𝑛 + 2) ∑ (
𝑟𝑘

2

𝑛 − 𝑘
)

𝐾

𝑘=1

 (11) 

 

The description of Equation (11) is as follows: n is the number of observation data, K is the 

number of selected delays, and 𝑟𝑘
2 is the sample correlation. The test criteria for the Ljung-Box 

test are: If the hypothesis is tested: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼, then H0 is rejected. The p-value obtained 

from the Ljung-Box test for the modeled data is 2,02 x 10−5 . This value is smaller than the 

selected α value, so it can be concluded that the data on the frequency of earthquake events in 

the Enggano segment is time-dependent. Based on these results, the Poisson distribution 

mixture model is the more suitable distribution model. 

 In the implementation phase of the Poisson distribution mixture model, a trial-and-error 

approach (repetitive method) is generally used from different possible states. In this study, the 

best model was sought from three models. The three models are hidden/unobserved state 

models (m), namely (2, 3, 4). The criteria for selecting a multistate model are based on the 

smallest BIC and AIC values. The next step to determine the input parameters is to take the 

value 𝝀 = (𝜆1, … , 𝜆𝑛),  namely the parameter value for the average number of earthquake 

events per year, and the initial probability of occurrence 𝜹 = (𝛿1, … , 𝛿𝑛). The first step in finding 

the parameter values is to create a frequency distribution table from data on the number of 

earthquakes, where the number of classes in the table is determined by the number of hidden 

conditions. 

In this study, values ranging from 2 to 26 for the number of earthquakes were used to divide 

the intervals for each class using Rstudio. In this article, we will only explain the case m=3. Given 

three hidden states with an average number of earthquakes  𝝀 = (𝜆1, 𝜆2, 𝜆3), then there are 3 

classes with interval lengths for each class. Calculate the value 𝝀 = (𝜆1, 𝜆2, 𝜆3)  by inputting 

earthquake frequency data into each hidden state group based on the sample space. Parameter 

𝜹 = (𝛿1, 𝛿2, 𝛿3)  is the initial probability from hidden state 1 to hidden state 3 obtained by 

calculating the number of frequencies in each group divided by the total frequency of the hidden 

state. The estimated parameters 𝝀 and 𝜹 for the case of 3 hidden states can be seen in the 

following Table 2. 

 

Table 2. Results of PMM parameter calculation for hidden conditions in case 3 

Amount  Frequency Hidden Events  𝒎 = 1 𝒎 =2 𝒎 = 3 
1 6 1 6 - - 
2 7 1 7 - - 
3 7 1 7 - - 
4 7 1 7 - - 
5 8 1 8 - - 
6 8 1 8 - - 
7 8 1 8 - - 
8 9 1 9 - - 
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Amount  Frequency Hidden Events  𝒎 = 1 𝒎 =2 𝒎 = 3 
9 9 1 9 - - 

10 9 1 9 - - 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

43 18 3 - - 18 
44 18 3 - - 18 
45 19 3 - - 19 
46 19 3 - - 19 
47 21 3 - - 21 
48 22 3 - - 22 
49 22 3 - - 22 
50 22 3 - - 22 
51 24 3 - - 24 
52 26 3 - - 26 

 𝑓 52 18 9 25 
 𝜆  9,11 3,22 17,60 
 𝛿  0,35 0,17 0,48 

 

After obtaining the estimated values of 𝝀 and 𝜹 over a period per year, it can be declared 

that the first hidden state has an average number of earthquakes of 9,11 events with an initial 

occurrence probability of 0,35 for the average occurrence of the second hidden state of 3,22 

with an initial probability of 0,17 and for the average occurrence in the third hidden state of 

17,60 with an initial probability of 0,48. Next, an iteration process is performed to obtain 

convergent model parameter values. The results of Poisson Mixture Models modeling for 

multiple values of m are shown in Table 3. 

 

Table 3. Poisson Mixture Model Results on Earthquake Data 

Model 𝒊 𝝀 𝜹 -llk Iteration AIC BIC 
𝑚 = 1 1 12.17 1 197.62 2 397.24 399.19 

𝑚 = 2 
1 15.42 0.63 

167.63 22 341.26 347.11 
2 6.53 0.37 

𝑚 = 3 
1 9.11 0.35 

165.33 55 339.66 340.41 2 3.22 0.17 
3 17.60 0.48 

𝑚 = 4 

1 5.53 0.33 

165.32 89 344.66 358.32 
2 11.38 0.31 
3 16.92 0.25 
4 22.83 0.12 

 

Based on a comparison of the AIC and BIC values for the m values that were tested, the 

smallest value was in the model for m=3 with an AIC value = 339.66 and a BIC value = 340.41. 

Furthermore, research data modeling using PHMMs is also studied, where the parameters are 

estimated using the EM algorithm. The following are the steps taken along with the processed 

results to obtain the three models for estimating the number of earthquakes and determining 

the best model. 

 

 

 



1418  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1411-1423 

 
 

At this stage of determining the input parameters, we calculate the value 𝝀 = (𝜆1, … , 𝜆𝑛), 

namely the parameter value of the average number of earthquake events per year, with the 

initial probability of the event  𝜹 = (𝛿1, … , 𝛿𝑛)  and the hidden state transition probability 

matrix 𝚪 size (𝑛 𝑥 𝑛). The initial step finding the parameter values is to create a frequency 

distribution table from data on the number of earthquakes with the number of classes in the 

table determined by the number of hidden conditions that will be provided. In this study, values 

in the range 2 to 26 for the number of earthquakes were taken to divide the intervals into each 

class uniformly. For example, in a model with m=3, if given three hidden states with an average 

number of earthquakes  𝝀 = (𝜆1, 𝜆2, 𝜆3), then there are three classes with interval lengths for 

each class.  

 

𝑐 = minimum value +
range

many classes
= 2 +

24

3
= 10 

 

Based on the c value above, for the sample space the number of earthquakes in hidden state 

1 is {2, 3, 4, …, 10} out of {11, 12, 13, …, 18} in hidden state 2 and {19, 20, 21, …, 26} enter the 

hidden state 3. To calculate the value 𝝀 = (𝜆1, 𝜆2, 𝜆3)  is to enter earthquake frequency data into 

each group of hidden states based on the sample space. Parameter 𝜹 = (𝛿1, 𝛿2, 𝛿3) is the initial 

probability of hidden state 1 to hidden state 3, obtained by calculating the number of 

frequencies in each group divided by the overall frequency of hidden states. The results of 

calculating the parameters 𝝀 and 𝜹 for the case of  3 hidden states can be seen in the table below: 

 

Table 4. Results of PHMMs parameter calculation for hidden conditions in case 3 

Amount  Frequensi Hidden events  𝒎 = 1 𝒎 =2 𝒎 = 3 
1 2 1 2 - - 
2 2 1 2 - - 
3 2 1 2 - - 
4 3 1 3 - - 
5 4 1 4 - - 
6 3 1 3 - - 
7 3 1 3 - - 
8 7 1 7 - - 
9 8 1 8 - - 

10 8 1 8 - - 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

42 14 2 - 14 - 
43 14 2 - 14 - 
44 24 3 - - 3 
45 14 2 - 2 - 
46 10 1 1 - - 
47 19 3 - - 19 
48 22 3 - - 22 
49 21 3 - - 21 
50 17 2 - 17 - 
51 15 2 - 15 - 
52 22 3 - - 22 

 𝑓 62 23 21 8 
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Amount  Frequensi Hidden events  𝒎 = 1 𝒎 =2 𝒎 = 3 

 𝜆  6,00 14,24 19,25 

 𝛿  0,44 0,40 0,15 

 

After obtaining the values of 𝝀 and 𝜹, t was found that the first hidden state had an average 

number of earthquakes of 6,00 events with an initial probability of occurrence of 0,44, for the 

average occurrence in the second hidden state of 14,24 with a The initial probability is 0,40 and 

for the average event in the third condition is 19,25, where the initial probability of the event 

is 0,15. Parameter value 𝚪, namely the probability matrix for the hidden state transition, where 

the elements in the matrix are obtained by calculating the frequency of each possible hidden 

state transition, which is then divided by the total number of each row in the hidden state. There 

are three possible hidden state transitions, shown in the following Table 5: 

 

Table 5. Probabilities in 3 hidden states 

Unobservable state 1 2 3 
1 17/23 4/23 2/23 
2 5/21 12/21 4/21 
3 0/7 5/7 2/7 

 

so we get the transition probability matrix for the three hidden states as follows: 

 

𝚪 = [
0.74 0.17 0.09
0.24 0.57 0.19

0 0.71 0.29
] 

  

Based on the above transition probability matrix, it can be interpreted that if this period is 

in the first hidden state, the probability that the frequency of future earthquakes will be in the 

first hidden state is 0.74. When this period is in hidden state 1, the probability that the 

frequency of earthquakes in the future will be in hidden state 2 is 0.17, and when it is in hidden 

state 1, the probability that the frequency of earthquakes in the future will be like this in the 

hidden state 3 is 0.09 and so on. The results of the PHMM modelling can also be seen in Table 

6. 

 

Table 6. Input parameters λ, δ and Γ for each PHMMs 

𝒎 𝒊 𝝀 𝜹 
𝚪 

1 2 3 4 

𝑚 = 2 
1 8.219 0.615 0.750 0.250 - - 
2 18.500 0.385 0.368 0.632 - - 

𝑚 = 3 
1 6.000 0.442 0.739 0.174 0.087 - 
2 14.238 0.404 0.238 0.571 0.190 - 
3 19.250 0.154 0.000 0.714 0.286 - 

 1 5.529 0.327 0.588 0.235 0.118 0.059 
𝑚 = 4 2 11.375 0.308 0.313 0.438 0.125 0.125 

 3 16.923 0.205 0.077 0.308 0.462 0.154 
 4 22.833 0.115 0.000 0.200 0.600 0.200 
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Next, perform an iterative process on the initial values of the parameters 𝝀̂ , 𝜹̂ and 𝚪 ̂for 

each model using the EM (Expectation Maximization Algorithm) algorithm. After the parameter 

estimation results are obtained, the next step is to compare the AIC and BIC values, where the 

smallest AIC and BIC values are the best models for estimating the number of earthquakes. The 

results of the parameter estimation calculation process (𝛌, 𝛅, and 𝚪) with hidden states 𝑚 =

(2,3,4) can be seen in Table 7.  

 

Table 7. EM algorithm estimation parameters for each PHMMs 

𝒎 - llk AIC BIC i 𝝀̂ 𝜹̂ 
𝚪̂ 

1 2 3 4 

𝑚=2 155.12 320.24 330.00 
1 5.67 1 0.84 0.16 - - 
2 15.60 0 0.06 0.94 - - 

𝑚=3 140.45 302.91 324.38 
1 2.80 1 0.86 0.14 0.00 - 
2 9.66 0 0.00 0.95 0.05 - 
3 16.75 0     

𝑚=4 140.20 318.40 355.46 

1 2.79 1 0.86 0.14 0.00 0.00 
2 9.64 0 0.00 0.95 0.05 0.00 
3 15.70 0 0.00 0.00 0.70 0.30 

4 20.22 0 0.00 0.00 1.00 0.00 

  

Based on Table 7, the estimated values using the EM algorithm in PHMMs, it can be seen 

that the smallest AIC and BIC values (marked with bold numbers) are in three hidden states, 

namely with AIC value = 302, 91 and BIC value = 324.38. So, it can be said that the 3 hidden 

states model is the best compared to the m=2 and m=4 models. After the model building phase 

was completed and the AIC and BIC values were determined for each model, PMMs, and 

PHMMs, both models resulted in the identification of the same number of unobserved groups, 

namely 3 groups. This can be seen by looking at the smallest AIC and BIC values of each model. 

Furthermore, for the case of many triplets, it was found that the PHMMs model had the smallest 

AIC and BIC values compared to PMMs. Therefore, the model chosen for the seismic data 

modeled in this study follows the probability distribution of PHMMs with a number of 

unobserved groups of 3. The following formulation of the density probability function of 

PHMMs for 3 hidden states is as follows: 
 

𝑝(𝑥) = ∑ 𝛿𝑖𝑃𝑜𝑖(𝜆𝑖  )

𝑚

𝑖=1

 

𝑝(𝑋𝑡) = ((0.44)𝑃𝑜𝑖(6.00) + (0.40)𝑃𝑜𝑖(14.24) + (0.15)𝑃𝑜𝑖(19.25)) 

 

with the transition probability matrix of the unobservable data process is  

 

𝚪 = [
0.74 0.17 0.09
0.24 0.57 0.19
0.00 0.71 0.29

]. 
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D. CONCLUSION AND SUGGESTIONS 

We successfully applied two types of Poisson distribution (Poi (𝜆)), mixed models, namely 

the independent Poisson mixed model and the dependent Poisson model, to build a 

probabilistic model that uses historical data on the frequency of earthquake events from 

January 1st 1971, to December 31, 2022, in the Enggano segment of the Sumatra subduction 

zone. The estimation technique for the implemented probability model parameters uses the 

expectation and maximization algorithm, while the data used is data on the frequency of 

occurrence of major earthquakes with magnitude 𝑀𝑤 ≥ 4.40 obtained from the United States 

Geological Survey (USGS). 

The modeled empirical data has an average value of 𝑀𝑤 =  12.17 with a variance of 

𝑀𝑤 =38.18. In other words, there is an overdispersion condition in the research data because 

the variance value is larger than the sample average. Based on the results of testing the 

dependence of research data on time using the Ljung-Box test, in which the p-value (2.02x10-5) 

of the test statistic from the Ljung-Box test is less than the selected 𝛼 -Significance is level value, 

namely 0.05, then evidence was found of the dependence of the frequency of earthquakes each 

year on time. From these two test results, it can be concluded that the probability model that 

fits the modeled data is a dependent mixed model of Poisson distribution, namely m-state 

Poisson Hidden Markov Models (PHMMs). To determine the number of states (m) from the m-

state PHMMs model, we implemented a trial-and-error technique for multiple values m=2,3 and 

4. Based on the model selection criteria using the smallest AIC and BIC With these values, we 

obtained the number of unobserved states or groups. The modeled data is 3 states, namely 

𝑝(𝑥) =  (044) 𝑃𝑜𝑖(6.00) + (0.40) 𝑃𝑜𝑖(14.24) + (0.15) 𝑃𝑜𝑖(19.25), with the transition 

probability matrix of the unobservable process is as follows: 

 

𝛤 = [
0.74 0.17 0.09
0.24 0.57 0.19
0.00 0.71 0.29

]. 

 

In most coastal areas of Indonesia, there is a need for study results in the field of disaster 

risk reduction, especially modeling of earthquake events. Therefore, it is hoped that the results 

of this research can provide an additional contribution to complement the results of previous 

studies conducted by earthquake researchers in the Enggano segment to map the degree of 

earthquake vulnerability in this segment. Specifically, this article describes of unobserved 

behavior (dynamics of tectonic plates) based on selected models, however this study is still 

being carried out on a very small scale by earthquake researchers. 
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