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 Deaths due to dengue hemorrhagic fever (DHF) remains one of the most pressing 
public health issues in Indonesia, especially in urban areas such as Semarang City, 
which has a high population density and diverse environmental conditions that 
potentially increase the risk of transmission and death from DHF. This study aims 
to model the number of DHF in Semarang City using a Bayesian-based Zero-Inflated 
Poisson Inverse Gaussian Regression (ZIPIGR) approach. The research data was 
obtained from the Semarang City Health Office and the Central Statistics Agency 
(BPS) in 2024, with the response variable being the number of DHF deaths and five 
predictor variables. The data showed overdispersion and a high proportion of zeros 
(around 50%), indicating the presence of excess zeros in count data with a small 
sample size. The Bayesian ZIPIGR method was chosen because it can produce more 
stable parameter estimates than classical methods such as Maximum Likelihood 
Estimation (MLE), especially for data with complex likelihood functions, small 
sample sizes, and many zero values. Parameter estimation was performed using 
Gibbs Sampling simulation in the Markov Chain Monte Carlo (MCMC) framework. 
The results show that the Bayesian ZIPIGR model performs better than the MLE 
ZIPIGR model based on the Root Mean Square Error (RMSE) value. Factors that 
significantly influence DHF mortality are population density, slum area, and 
number of health workers. These results confirm that regional density and health 
worker capacity play an important role in increasing the risk of DHF mortality in 
urban areas. The developed model has been proven to be highly accurate in 
modeling count data with excess zero characteristics and makes an important 
contribution to health policy formulation. In practical terms, this model can be used 
to improve early warning systems and DHF control strategies in densely populated 
urban areas such as the city of Semarang. 
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A. INTRODUCTION  

Poisson distribution is a discrete distribution with random variable values in the form of 

positive integers (Akinkunmi, 2019). Poisson regression assumes that the mean and variance 

of the response variable are equal, a condition known as equidispersion (Bektashi et al., 2022). 

However, the mean and variance of enumerated data are often not equal (Agresti, 2019), either 

the mean is greater than the variance (overdispersion) or the mean is less than the variance 

(underdispersion). In other words, the assumption of equidispersion is often violated. 

Enumerated data often show considerable variance because they contain many extra zeros or 

scatter that is larger than the values in the data or both (Aswi et al., 2022). 
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One approach to address overdispersion is by developing models that combine the Poisson 

distribution with various discrete or continuous distributions, known as mixed Poisson 

distributions (Lambert, 1992). While this method offers an alternative solution for 

overdispersion, only a few types are commonly applied in research because of the complexity 

of their calculations (Payne et al., 2017). Some mixed poisson distributions that have been 

developed are Zero-Inflated Poisson (ZIP), Generalized Poisson, Negative Binomial Poisson and 

Poisson Inverse Gaussian (PIG). 

The Zero-Inflated Poisson (ZIP) model is a simple mixture model for discrete data with 

many zero values (Lambert, 1992). ZIP regression is able to control overdispersion in the 

Poisson distribution and zero value inflation so that the accuracy of parameter estimation can 

be guaranteed (Rahayu et al., 2016). In general, the ZIP regression model is still rarely used for 

count data that shows inflation due to zero values and overdispersion. Several studies related 

to Poisson regression problems and their applications from time to time always experience 

developments. Accoarding to the research of Amalia et al. (2021) found that Zero-Inflated 

Poisson (ZIP) can be used to analyze the number of excess zeros and overdispersion. Also 

Abdulhafedh (2023) conducted research comparing the Poisson regression, negative binomial 

regression, and zero-inflated Poisson (ZIP) models, with the result that ZIP is more effective for 

handling excess zeros in traffic accident data. 

The Poisson Inverse Gaussian (PIG) distribution, introduced by Holla in 1966, is a form of 

mixed Poisson distribution where the random effect is modeled using an inverse Gaussian 

distribution ((Karlis & Xekalaki, 2005). Some research on Poisson Inverse Gaussian (PIG) 

regression has been conducted by Putri et al. (2020), the study found that the Poisson-Inverse 

Gaussian regression model provides a better fit than the Negative Binomial regression model 

for overdispersed count data, as indicated by its higher pseudo R-squared value in the 

horseshoe crabs case study. The research of Zha et al. (2016) used PIG regression modeling to 

analyze the number of motorcycle accidents that occurred in Texas and Washinton, by 

comparing the negative binomial regression model and the PIG regression model on the Akaike 

Information Criterion (AIC) value and the Bayesian Information Criterion (BIC) value. 

Zero-Inflated Poisson Inverse Gaussian (ZIPIG) is a development of the Zero-Inflated 

Poisson (ZIP) and Poisson Inverse Gaussian (PIG) models (Hilbe, 2014). The ZIPIG model is very 

effective for handling data that experience overdispersion and have excess zero data properties. 

Chakraborty & Biswas (2024) applied the Zero Inflated Poisson Inverse Gaussian (ZIPIG) model 

to health data. The study found that the Zero-Inflated Poisson Inverse Gaussian (ZIPIG) 

regression model outperforms the Zero-Inflated Negative Binomial (ZINB) model in predicting 

dengue cases in Bangladesh, based on AIC and BIC criteria. According to Purhadi & Ermawati 

(2021) the Bivariate Zero-Inflated Poisson Inverse Gaussian Regression (BZIPIGR) model is 

effective for data experiencing overdispersion due to zero inflation in HIV and AIDS cases in 

Trenggalek and Ponorogo City. BZIPIGR is a development of ZIPIG, which uses two response 

variables commonly referred to as bivariate. Therefore, the ZIPIG model is recommended as a 

more suitable approach for modelling DHF incidence in similar over-dispersed and zero-

inflated datasets.  

Parameter estimation in the Zero-Inflated Poisson Inverse Gaussian (ZIPIG) model is 

generally done using Maximum Likelihood Estimation (MLE). MLE is chosen because it is 
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efficient and consistent on large sample sizes. According to Psutka & Psutka (2019), MLE works 

optimally when the sample is large, because the asymptotic assumptions underlying this 

method can be met. Azizan et al. (2020) revealed that the MLE approach produced low accurate 

and high bias estimates of the item parameters in small sample sizes regardless of the number 

of items. However, at small sample sizes, MLE tends to produce unstable parameter estimates 

and can result in bias, so caution is needed in its use in the context of limited samples. This 

limitation of MLE in handling small samples encourages the development and application of 

alternative methods, one of which is the Bayesian method. Utomo et al. (2025) found that Zero-

Inflated Poisson (ZIP) with the Bayesian approarch is better than MLE approach as shown in 

the simulation study results on several small, medium and low sample sizes. 

The number of deaths due to Dengue Fever (DHF) is one example of enumerated data in 

the health sector. According to Kemenkes RI (2022), Dengue Fever (DHF) is an infectious 

disease caused by the DHF virus carried by female Aedes aegypti & Aedes albopictus 

mosquitoes. This disease usually occurs in tropical and subtropical regions, where Southeast 

Asia is in the subtropical region. The Ministry of Health until the 15th week of 2024 stated that 

the total cases of morbidity cases due to DHF reported were 62,001 cases. The highest cases are 

in West Java (17,331 cases), Banten (5,877 cases), and Central Java (4,330 cases), while there 

are 475 cases of death due to DHF, with the highest deaths reported in West Java (158 cases), 

Central Java (105 cases), and East Java (37 cases). The high number of DHF deaths in Central 

Java needs to be a concern. DHF is still a problem that must be solved in these various regions 

because it is the province with the second most cases in Indonesia. Various treatments to 

prevent the spread of this virus have been carried out by the Central Java Provincial Health 

Office. However, the spread of this disease continues in this province.  

Based on this description, the data related to the mortality rate due to DHF contains almost 

50% zero values, so the researcher plans to develop a Zero-Inflated Poisson Inverse Gaussian 

(ZIPIG) analysis using the Bayesian parameter estimation approach to evaluating the best 

model between ZIPIG using Maximum Likelihood Estimation (MLE) and Bayesian on data 

deaths due to Dengue Hemorrhagic Fever (DHF) in Semarang City, as well as creating a model 

using Bayesian parameter estimators and determining the factors that significantly affect the 

number of deaths due to DHF in Semarang City. 

  

B. METHODS 

1. Data and Research Variable 

This study is a quantitative study using secondary data obtained from the Semarang City 

Health Office and the Central Statistics Agency (BPS) in 2024, consisting of 16 subdistricts as 

observation units. The response variable in this study was the number of deaths due to DHF, 

while the predictor variables consisted of the number of DHF cases (X₁), population density 

(X₂), percentage of clean water sources (X₃), area of slums (X₄), and number of health workers 

(X₅). The analysis stages were carried out as follows, starting with (1) descriptive analysis to 

determine the characteristics of the data, followed by detecting overdispersion, 

multicollinearity, and zero inflation, then (2) formulating the Zero-Inflated Poisson Inverse 

Gaussian Regression (ZIPIGR) model, and (3) estimating the parameters using the MLE and 

Bayesian approaches. The Bayesian approach used the Gibbs Sampling method in Markov Chain 
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Monte Carlo (MCMC). The estimation process was carried out using R studio software, with 

20,000 MCMC iterations, 5,000 initial iterations (burn-in) deleted, and a thinning interval of 10 

to reduce autocorrelation between samples. Lastly, (4) MLE and Bayesian were compared using 

the smallest RMSE value. 

In the context of dengue hemorrhagic fever (DHF) cases, the Poisson–Inverse Gaussian 

component describes the number of deaths due to DHF, while the zero-inflated component 

represents subdistricts that have no deaths, which may happen due to successful health 

interventions or random variation. Model performance was evaluated using Root Mean Square 

Error (RMSE) to compare the Bayesian ZIPIGR model and the Maximum Likelihood Estimation 

(MLE) ZIPIGR model, where a smaller RMSE value indicates better prediction accuracy. The 

application of this model provides an understanding of how factors such as population density, 

slum area size, access to clean drinking water, and the number of health workers affect deaths 

from DHF, thereby providing a basis for evidence-based health policies for the Semarang City 

Government in its efforts to control and prevent DHF. 

 

2. Multicollinearity 

According to Kyriazos & Poga (2023), The Variance Inflation Factor (VIF) indicates how 

much the regression coefficients are inflated as a result of multicollinearity. VIF measures how 

much the variance of regression coefficient estimates increases when multicollinearity occurs. 

A high VIF indicates high multicollinearity. If VIF = 1, the relationship between the predictor 

variables is mutually free (no multicollinearity occurs), A VIF value of 1 indicates no 

multicollinearity, while values greater than 1 reflect increasing levels of multicollinearity. 

Generally, a VIF exceeding 5 or 10 is considered high and signals serious multicollinearity 

issues. 

 

3. Overdispersion  

In Poisson regression, one essential assumption is that the mean and variance of the 

response variable are equal (equidispersion). Overdispersion happens when the variance 

exceeds the mean, which can result from positive correlation or excessive variation in the 

response probabilities. 

 

𝑉𝑇 = ∑
(𝑦𝑖 − 𝑦̅)2

𝑦̅
= (𝑛 − 1)

𝑆2

𝑦̅

𝑛

𝑖=1

 (1) 

 

This value is equal to the variance-to-ragam ratio, often referred to as the dispersion index, 

multiplied by n-1, where n is the sample size. If the value of the dispersion index is less than 1, 

it can be said that there is underdispersion, whereas overdispersion occurs when the 

dispersion index is more than 1 (Handarzeni, 2022). 

 

4. Zero Inflated Poisson Invers Gaussian Regression (ZIPIGR) 

Zero-Inflated Poisson Inverse Gaussian regression is a combined regression coding of Zero-

Inflated distribution and Inverse Gaussian distribution. The ZIP model deals with excess zeros 

and the PIG model deals with overdispersion in the data. There are three parameters in the 
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ZIPIG model, namely the mean (𝜇), dispersion (𝜏), and zero inflated (𝑝). Zero-Inflated Poisson 

Inverse Gaussian can be written as  𝑌𝑖~𝑍𝐼𝑃𝐼𝐺(𝜇, 𝜏, 𝑝) with the following propability function. 

 

𝑃(𝑌 = 𝑦 | 𝜇, 𝜏, 𝑝) = {
𝑝 + (1 − 𝑝)𝑃(𝑌 = 0 | 𝜇, 𝜏),   for 𝑦 = 0

(1 − 𝑝)𝑃(𝑌 = 0 | 𝜇, 𝜏),   for 𝑦 = 1,2,3
 (2) 

 

where for 𝑦 = 0 written as follows: 

 

𝑃(𝑌 = 0|𝜇, 𝜏, 𝑝) = 𝑝 + (1 − 𝑝) exp (
1

𝜏
) (

2

𝜋𝜏
)

1
2
(2𝜇𝜏 + 1)

1
4 (

𝜋

2 (
1
𝜏 √2𝜇𝜏 + 1)

)

1
2

exp (
1

𝜏
√2𝜇𝜏 + 1)  (3) 

 

where as for y=1,2, ... is written as follows: 

 

(𝑌 = 𝑦|𝜇, 𝜏, 𝑝) = (1 − 𝑝)
𝜇𝑦

𝑦!
exp (

1

𝜏
) (

2

𝜋𝜏
)

1

2 (2𝜇𝜏 + 1)−
(𝑦−

1
2)

2 (
𝜋

2(
1

𝜏
√2𝜇𝜏+1)

)

𝑦−
1

2

exp (
1

𝜏
√2𝜇𝜏 + 1)  (4) 

 

with 𝑝 =
exp(−𝜇𝑋𝑖

𝑇𝛽)

1+exp(−𝜇𝑋𝑖
𝑇𝛽)

 and 1 − 𝑝 =
1

1+exp(−𝜇𝑋𝑖
𝑇𝛽)

 

 

Suppose a response variable 𝑌𝑖~𝑍𝐼𝑃𝐼𝐺(𝜇, 𝜏, 𝑝)  then the ZIPIG regression model can be 

written in two model components, namely the component for the Poisson state model (𝜇) and 

the zero-inflated model component, written: 

 

for the model 𝜇 

𝜇 = exp(𝑿𝑻𝜷) (5) 

  

ln(𝜇) = 𝐗𝑇𝜷 (6) 

 

for zero inflated model is: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛
𝑝

1 − 𝑝
= −𝛾𝐗𝑖

𝑇𝜷 (7) 

 

Distributing Equations (6) and (7) to Equations (3) and (4), the probability function for the 

ZIPIG regression model when 𝑦 = 0  is obtained: 

 

𝑃(𝑌 = 0|𝜷, 𝜏, 𝑝) =
𝑒𝑥𝑝(−𝜇𝑋𝑖

𝑇𝛽)

1 + 𝑒𝑥𝑝(−𝜇𝑋𝑖
𝑇𝛽)

+
1

1 + 𝑒𝑥𝑝(−𝜇𝑋𝑖
𝑇𝛽)

𝑒𝑥𝑝 (
1

𝜏
) (

2

𝜋𝜏
)

1
2
(2 𝑒𝑥𝑝(𝐗𝑇𝜷) 𝜏 + 1)

1
4 

(
𝜋

2 (
1
𝜏 √2 exp(𝐗𝑇𝜷) 𝜏 + 1)

)

1
2

exp (−
1

𝜏
√2 exp(𝐗𝑇𝜷) 𝜏 + 1) 

(8) 

 

for 𝑦 = 1,2, … is written as follows: 



1620  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1615-1628 

 

 

 

𝑃(𝑌 = 𝑦|𝜷, 𝜏, 𝑝) =
1

1 + 𝑒𝑥𝑝(−𝜇𝑋𝑖
𝑇𝛽)

(
(𝑒𝑥𝑝(𝑋𝑖

𝑇𝛽))𝑦𝑖𝑒𝑥𝑝 (
1
𝜏)

𝑦𝑖!
 ) (

2

𝜋𝜏
)

1
2
(2 𝑒𝑥𝑝(𝐗𝑇𝜷) 𝜏 + 1)−

(𝑦𝑖−
1
2
)

2  

(
𝜋

2 (
1
𝜏 √2 exp(𝐗𝑇𝜷) 𝜏 + 1 + 1)

)

𝑦𝑖−
1
2

exp (−
1

𝜏
√2 exp(𝐗𝑇𝜷) 𝜏 + 1 + 1) 

(9) 

 

5. Bayesian Zero Inflated Poisson Inverse Gaussian Regression 

The ZIPIG model has 2 joint distributions, so 2 priors are obtained for each of the ZIP and 

PIG models. According to Liu & Powers (2012), without prior knowledge of the distribution of 

the parameters, determining the prior distribution can use informative priors. The ZIPIG model 

parameters 𝛂  and  𝛃 are determined to be Normal (𝜇, 𝜎2)  distributed so that the prior 

distribution can be written as: 

 

𝑓(α, β) = ∏

[
 
 
 

1

√2𝜋𝜎𝑎𝑗
𝑒

{−
(𝑎𝑗−𝜇𝑎𝑗)

2

2𝜎𝑎𝑗
2 }

]
 
 
 

×𝑚
𝑗=0 ∏

[
 
 
 

1

√2𝜋𝜎𝛽𝑗
𝑒

{−
(𝛽𝑗−𝜇𝛽𝑗)

2

2𝜎𝛽𝑗
2 }

]
 
 
 

𝑙
𝑗=0    (10) 

 

According to Lijoi et al. (2005) the PIG model 𝛼 ≥ 0 and 𝛾 > 0, are denoted as 𝑉~𝐼𝐺(𝛼, 𝛾), so 

the prior distribution can be written as: 

 

𝑓(𝑣) =
𝛼

√2𝜋
𝑣−

3
2𝑒𝑥𝑝 [−

1

2
(
𝛼2

𝑣
+ 𝛾2𝑣) + 𝛾𝛼] (11) 

 

Therefore, the posterior distribution is the multiplication of the prior and likelihood 

distributions. Based on equations (10) and (11), the posterior distribution for the ZIPIG model 

is: 
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𝑓(𝛼, 𝛽|𝑦) ∝ 𝑓(𝑦|𝛼, 𝛽)𝑓(𝛼, 𝛽) 

𝑓(𝛼, 𝛽|𝑦) ∝ ∏
1

1 + 𝑒𝑥𝑝(−𝜇𝑿𝑖
𝑇𝜷)

[𝑒𝑥𝑝(−𝜇𝑿𝑖
𝑇𝜷) + exp (

1

𝜏
−

1

𝜏
√(2(exp(𝐗𝑇𝜷))𝜏) + 1)]

𝑛

𝑖=1
𝑦𝑖=0

× ∏ (
1

1 + 𝑒𝑥𝑝(−𝜇𝑿𝑖
𝑇𝜷)

)(
(𝑒𝑥𝑝(−𝛾𝑿𝑖

𝑇𝜷))𝑦𝑖exp (
1
𝜏)

𝑦𝑖!
) (

2

𝜋𝜏
)

1
2
[2 𝑒𝑥𝑝(−𝜇𝑿𝑖

𝑇𝜷) 𝜏

𝑛

𝑖=1
𝑦𝑖>0

+ 1]
−(

𝑦𝑖−
1
2

2
)

 (
𝜋

2 (
1
𝜏 √(2(exp(𝐗𝑇𝜷))𝜏) + 1)

)

𝑦𝑖−
1
2

exp (−
1

𝜏
√(2(exp(𝐗𝑇𝜷))𝜏) + 1)

× ∏

[
 
 
 

1

√2𝜋𝜎𝑎𝑗

𝑒
{−

(𝑎𝑗−𝜇𝑎𝑗)
2

2𝜎𝑎𝑗
2 }

]
 
 
 

×

𝑚

𝑗=0

∏

[
 
 
 

1

√2𝜋𝜎𝛽𝑗

𝑒
{−

(𝛽𝑗−𝜇𝛽𝑗)
2

2𝜎𝛽𝑗
2 }

]
 
 
 𝑙

𝑗=0

×
𝛼

√2𝜋
𝑣−

3
2𝑒𝑥𝑝 [−

1

2
(
𝛼2

𝑣
+ 𝛾2𝑣) + 𝛾𝛼] 

(12) 

 

6. Convergence Test 

The MCMC convergence check is used to determine whether the generated samples are in 

accordance with the target distribution, namely the posterior distribution. MCMC convergence 

check can use trace plot, MC Error and autocorrelation. The formula for calculating MC error is: 

 

𝑀𝐶𝐸[𝐺(𝜃)] = √
1

𝐾(𝐾 − 1)
∑ (𝐺̅(𝜃)𝑏 − 𝐺(𝜃))

2𝐾

𝑏=1
 (13) 

 

where, 𝐺̅(𝜃)𝑏  is the sample mean of each batch, 𝐺(𝜃) is the general sample mean, 𝐾  is the 

number of batches. 

 

7. Credible Interval 

Accoarding to Hespanhol et al. (2019) states that testing the parameters of the Bayesian 

method uses the Credible Interval which uses the lower limit of the 2.5% percentile and the 

upper limit of the 97.5% percentile. The test is to determine the effect of each predictor variable 

on the response variable with the following hypothesis: 

𝐻0: 𝛽 = 0 ; there is no significant effect of the independent variable on the response variable 

𝐻1: 𝛽 ≠ 0 ; there is a significant effect of the independent variable on the response variable 

 

The decision criteria for rejecting or accepting 𝐻0is based on whether or not a zero value 

appears in the Credible Interval of each parameter. If it contains zero value, then 𝐻0is rejected. 

 

8. Model Goodness Criteria 

The criterion used to measure the goodness of the model after obtaining a model is the Root 

Mean Square Error (RMSE). RMSE is used based on the estimation error. The error shows how 

much the secondary data estimation results differ from the simulated data estimation values. 

This value is used to determine which model is the best. The RMSE formula is as follows. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝜃𝑖 − 𝜃𝑖

(0)
)
2

𝑛

𝑖=1

  (14) 

 

where, 𝑛 is the number of simulations or observations, 𝜃𝑖 is Estimation of parameters in the i-

th simulation, and 𝜃𝑖
(0)

 is the true value of the parameter in the i-th simulation. 

 

C. RESULT AND DISCUSSION 

1. Multicollinearity 

The following are the results of testing the non-multicollinearity assumption using Rstudio 

software, as shown in Table 1. 

 

Table 1. VIF Results of Each Model 

Variables 𝑽𝑰𝑭𝒋 

The Number of DHF Cases (𝑋1) 5,981 
Population Density (𝑋2), 1,574 
Percentage Of Potable Water Sources (𝑋3), 1,134 
Slum Area(𝑋4), 1,579 
And The Number ff Health Workers (𝑋5) 6,055 

 

Based on Table 1, it can be seen that the VIF value in all predictor variables < 10 so that it 

can be said that the number of DHF cases (𝑋1), percentage of population (𝑋2), percentage of 

potable water sources (𝑋3), slum area (𝑋4), number of health workers (𝑋5) in Semarang City 

are independent of each other. 

 

2. Overdispersion and Excess Zero 

In Poisson regression, the assumption is that the average is equal to the variance, if the 

variance is greater than the average, the data is overdispersed or the variance is smaller than 

the average, the data is underdispersed. Based on the overdispersion test, the Chi-Square value 

is 248.934 and the p-value <0.01 so it can be concluded that the data is overdispersed. Excess 

zero testing is done by calculating the ratio of the proportion of zeros in the data to the 

expectation of zero in the Poisson distribution. Excess zero data is generally characterized by a 

higher proportion of zero values compared to other values, with percentages ranging from 50% 

to 90% (Bimali et al., 2021). The DHF death data in Semarang City has a zero value of 62.5%, 

which is more than 50%, so the data is interpreted as zero-inflation.   

 

3. Zero Inflation Poisson Invers Gaussian Regression (ZIPIG) with MLE 

The results of the parameter estimates from the analysis of the data number of measles used 

MLE are as the following in Table 2. 
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Table 2. Results of ZIPIG Estimation 

Parameter Estimators 𝜷̂𝒋 P-value Decision 

𝛽̂0 10,512 0,532 Accept H0 

𝛽̂1 0,138 0,438 Accept H0 

𝛽̂2 -0,664 0,847 Accept H0 

𝛽̂3 -0,037 0,843 Accept H0 

𝛽̂4 -0,008 0,857 Accept H0 

𝛽̂5 -0,518 0,605 Accept H0 

𝛾̂0 -11,650 0,419 Accept H0 
𝛾̂1 -0,113 0,330 Accept H0 
𝛾̂2 1,544 0,578 Accept H0 
𝛾̂3 0,085 0,452 Accept H0 
𝛾4 0,015 0,601 Accept H0 
𝛾̂5 4,150 0,578 Accept H0 

𝜆̂ -37,316 <0,01* Reject H0 

 

Based on Table 2, it can be seen that all parameters in ZIPIG regression using MLE have no 

significant effect on the number of DHF death cases. 

 

4. Zero Inflation Poisson Invers Gaussian Regression (ZIPIG) with Bayesian 

Convergence Test with Trace Plot 

The plot between the generated estimator and the iterations is called the trace plot. If the 

trace plot is random, then convergence is achieved. Iteration should be continued if 

convergence has not been achieved. Figure 1 shows the trace plot for the parameters 𝛽 and 𝛾.  

 

 

 
Figure 1. The Results of Trace Plot 
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Figure 1 shows that the trace plot is random or does not contain a trend when 2000 

iterations are performed. It can be concluded that the parameters 𝛽 and 𝛾 are convergent. 

 

5. Convergence Test with MC Error 

In addition to plotting, convergence checking can also be done by comparing the MC Error 

with 5% standard deviation of each parameter. Convergence is said to be achieved if the MC 

Error value is less than 5% standard deviation. MC Error on each parameter of the ZIPIG 

Bayesian Regression model in Table 3 as follows: 

 

Table 3. MC Error for each Parameter of ZIPIG Bayesian Models 

Parameter Estimators Standard Deviation 5% Standard Deviation MC Error Decision 

𝛽̂1 0,02 0,001 0,00052 Convergent 

𝛽̂2 1,04 0,052 0,02381 Convergent 

𝛽̂3 0,02 0,001 0,00033 Convergent 

𝛽̂4 0,01 0,0005 0,00017 Convergent 

𝛽̂5 2,21 0,1105 0,05085 Convergent 

𝛾1 0,08 0,004 0,00141 Convergent 
𝛾̂2 1,61 0,081 0,03484 Convergent 
𝛾̂3 0,10 0,005 0,00143 Convergent 
𝛾̂4 0,02 0,001 0,00039 Convergent 
𝛾̂5 3,53 0,176 0,07875 Convergent 

𝜆̂ 13,72 0,686 0,18670 Convergent 

 

Based on Table 3, the MC Error value for each parameter is less than 5% standard deviation. 

So it can be concluded that each parameter has converged or the generated sample comes from 

the desired posterior distribution.  

 
6. Factors Influencing DHF Deaths 

Credible intervals are used to test parameters based on the following hypothesis. 

𝐻0: 𝛽̂𝑗 = 0, 𝐻1: 𝛽̂𝑗 ≠ 0 , 

𝐻0: 𝛾̂𝑗 = 0, 𝐻1: 𝛾̂𝑗 ≠ 0 , 

𝐻0: 𝜆̂ = 0, 𝐻1: 𝜆̂ ≠ 0 

 

Where 𝛽̂𝑗 , 𝛾̂𝑗 and 𝜆 are ZIPIG model parameters. Credible intervals for each parameter are 

presented in table 4 below: 

 

Table 4. Credible Interval 

Parameter 
Estimators 

Value of 
Parameter 
Estimators 

Persentil 
2,5% 

Persentil 
97,5% 

Decision 

𝛽̂1 0,088 0,042 0,135 Accept 𝐻0 

𝛽̂2 2,774 0,754 4,855 Reject 𝐻0 

𝛽̂3 -0,035 -0,077 0,003 Accept 𝐻0 

𝛽̂4 0,037 0,022 0,054 Reject 𝐻0 

𝛽̂5 -4,888 -9,327 -0,593 Reject 𝐻0 

𝛾̂1 -0,013 -0,164 0,137 Accept 𝐻0 
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Parameter 
Estimators 

Value of 
Parameter 
Estimators 

Persentil 
2,5% 

Persentil 
97,5% 

Decision 

𝛾2 0,989 -1,995 4,168 Accept 𝐻0 
𝛾3 -0,065 -0,291 0,107 Accept 𝐻0 
𝛾̂4 0,022 -0,020 0,077 Accept 𝐻0 
𝛾5 -1,538 -8,689 5,169 Accept 𝐻0 

𝜆̂ 19,688 2,626 54,109 Reject 𝐻0 

 

Parameters are significant if the credible interval does not contain zeros in the 2.5% to 97.5% 

percentile interval. Based on Table 4.7, it can be seen that the factors that influence DHF are 

𝑋2= Population Density, 𝑋4= Slum Area, and 𝑋5= Number of Health Workers. 

 

7. Interpretation 

The ZIPIG regression model formed using the Bayesian method is as follows. 

 

logit (β̂) = 2,774𝑋2 + 0,037𝑋4 − 4,888𝑋5 

 

a. If the population density increases by 1(person/km2), the probability of DHF death 

increases by 
1

exp(2,774)
= 0,0625  or by 6.25%, assuming the values of slum area and 

number of other health workers are constant. 

b. If the area of slums increases by 1 (ha), the probability of DHF deaths increases by 
1

exp(0,037)
= 0,964  or by 96.37% assuming the values of population density and the 

number of health workers are considered constant. 

c. If the number of health workers increases by 1 person, the probability of DHF deaths 

decreases by 
1

exp(−4,888)
= 0,00757  or by 0.75%, assuming the values of population 

density and slum area are constant. 

 

Based on the parameter estimation results of the ZIPIG model using the MLE method (Table 

2), all variables showed no significant effect on the number of DHF deaths. However, through 

the Bayesian approach (Table 4), it was found that three variables namely population density, 

slum area, and number of health workers had a statistically significant effect. This shows the 

advantage of the Bayesian approach in detecting hidden patterns in data with small size and 

high proportion of zeros, and in producing more stable and informative parameter estimates. 

 

8. Best Selection Models 

To determine the goodness of the model between one method and another, Root Mean 

Square Error (RMSE) is used. The method that has the smallest RMSE is the best method. Here 

is the RMSE of each method, as shown in Table 5. 

 

Table 5. RMSE Results of Each Model 

Method RMSE 
ZIPIG MLE 28,132 
ZIPIG Bayesian 24,259 
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Based on Table 5, it can be seen that the RMSE value in ZIPIG using MLE is greater than 

ZIPIG using Bayesian. This means that the best model in modelling the number of deaths due to 

DHF in Semarang is ZIPIG using Bayesian. The RMSE tends to increase at a higher proportion 

of zeros in the MLE method, while in the Bayesian method, the effect of the proportion of zeros 

is smaller than that of the MLE. This indicates that Bayesian is more robust to changes in the 

proportion of zeros and is superior in situations with small sample sizes or high proportions of 

zeros. 

These results is similar to Utomo et al. (2025) study, in which the Bayesian method proved 

to be superior to maximum likelihood estimation in terms of RMSE values. In addition, (Al-

Sharoot & Al-Badry, 2024; Shukla et al., 2017; Xu et al., 2025) also calculated the relative 

efficiency of estimators for the dataset and found that Bayesian estimators were better than 

MLE in all cases, particularly when dealing with small sample sizes or 10-20 samples. 

 

D. CONCLUSION AND SUGGESTIONS 

Based on the research results, it can be concluded that the Zero-Inflated Poisson Inverse 

Gaussian Regression (ZIPIGR) model with the Bayesian approach produces a lower RMSE value 

than the MLE approach, making it more accurate in modelling data with a high proportion of 

zeros and a small sample size. Data on the number of DHF deaths in Semarang City in 2024 has 

overdispersion and 62.5% of the data is zero, which indicates that the ZIPIG model is very 

appropriate to use. Based on the credible interval, there are three predictor variables that 

significantly affect the number of DHF, namely: Population density (positive), Area of slums 

(positive), and Number of health workers (negative). A limitation of this study is that it does 

not include spatial components, even though DHF cases are likely to have a distribution pattern 

influenced by location and proximity between regions. Therefore, further research is 

recommended to integrate spatial analysis, such as Bayesian Spatial ZIPIG, in order to improve 

the accuracy of predictions and interpretation of results. Furthermore, the government is 

advised to increase health workers and strengthen environmental control in densely populated 

areas and slums to reduce Dengue Hemorrhagic Fever (DHF) deaths. 
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