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 Multivariate time series (MTS) analysis of the Consumer Price Index (CPI) in 
Indonesia often encounters challenges such as outliers, missing data, and inter-
variable correlations. Principal Component Analysis (PCA) is a practical approach 
for dimensionality reduction; however, its performance may vary depending on the 
data characteristics. This study is a quantitative comparative study that integrates 
empirical analysis and Monte Carlo simulation based on a first-order Vector 
Autoregressive (VAR(1)) model to evaluate three PCA approaches: Classical PCA, 
Robust PCA (RPCA), and PCA of MTS. These methods were applied to weekly price 
data of eight strategic food commodities across 70 districts and cities in Indonesia. 
The evaluation employed three criteria: (1) dimensionality reduction efficiency 
(empirical and simulation), (2) reconstruction accuracy measured using Root Mean 
Square Error (RMSE) (empirical), and (3) robustness to outliers and inter-variable 
correlations (simulation). Empirical results indicate that Classical PCA (lag 1) and 
RPCA (lag 1) are both efficient and effective in reducing dimensionality with 
minimal information loss. Using the first three principal components, all three 
methods were able to explain at least 85% of the total variance, with lag 1 identified 
as optimal. Simulation results reveal that RPCA (lag 1) provides the most stable and 
consistent performance in the presence of outliers, while Classical PCA (lag 2) 
performs better under conditions of high inter-variable correlation and a low 
proportion of outliers. These findings suggest that robust covariance estimation 
can improve the accuracy of dimensionality reduction and enhance the stability of 
multivariate time-series analysis for food price data in Indonesia. 
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A. INTRODUCTION  
Various challenges in the analysis of multivariate time series, such as missing data, outliers, 

and inter-variable correlations, are frequently encountered in weekly Consumer Price Index 

(CPI) data across 70 districts/cities in Indonesia. Such complexities can hinder the estimation 

process and reduce the accuracy of predictive outcomes. Handling missing data is a common 

challenge in data analysis. In this regard, imputing missing values often becomes a crucial step 

in data analysis (Stekhoven & Bühlmann, 2012). This issue is especially relevant in the context 

of Indonesia’s weekly CPI data, which often contain gaps due to reporting delays and 

irregularities across regions. The mechanism underlying missing data plays a critical role in 

determining the appropriate handling method. Three types of mechanisms are commonly 

distinguished: Missing Completely at Random (MCAR), Missing at Random (MAR), and Not 

Missing at Random (NMAR) (Little & Rubin, 2002; Lotfipoor et al., 2023).  
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The choice of imputation method also depends on the type and structure of the data. 

Moreover, algorithms commonly used in the analysis of large-scale data often rely on a 

complete dataset (Stekhoven & Bühlmann, 2012). For univariate data, linear interpolation can 

be employed. This method imputes missing values by drawing a straight line between the last 

observed data point and the first subsequent observed data point following the missing value 

(Sumertajaya et al., 2023). Linear interpolation has been extensively studied and implemented 

in the imputeTS package by (Moritz & Bartz-Beielstein, 2017). In this study, imputation was 

applied to empirical CPI data to ensure that the three Principal Component Analysis (PCA) 

approaches, namely Classical PCA, Robust PCA (RPCA), and PCA of Multivariate Time Series 

(PCA of MTS), were evaluated under comparable conditions. 

In addition to imputation, dimensionality reduction constitutes the next step in addressing 

multivariate datasets. PCA is a widely used and effective method for reducing dimensionality 

while retaining most of the data variability (Zamprogno et al., 2020). Several extensions of PCA 

have been developed to address challenges in the analysis of multivariate time series. Wei 

(2019) introduced the theoretical foundation of PCA for Multivariate Time Series (MTS), which 

in this study is referred to as PCA of MTS. Alshammri & Pan (2021) developed Moving Dynamic 

Principal Component Analysis (MDPCA) to address dynamic dependencies in non-stationary 

data. Zhao & Shang (2016) introduced Non-Stationary Principal Component Analysis (NSPCA), 

while Sundararajan (2021) proposed a frequency component–based PCA approach for the 

segmentation of multivariate time series. However, most of these developments focus on 

methodological extensions rather than systematic performance comparisons across PCA 

variants under realistic data conditions involving outliers, correlations, and autocovariance 

structures. 

Since PCA is constructed based on the sample covariance or correlation matrix, the 

technique is highly sensitive to outliers, which may lead to misleading dimensionality reduction 

results (Cotta, 2019). An outlier is an observation that falls well above or well below the overall 

bulk of the data (Agresti et al., 2023). The presence of outliers may arise from errors in data 

recording, unusual but explainable events in observations, measurement errors, analytical 

mistakes, instrument failures, experimental errors, or substantial variability within the data 

(Montgomery et al., 2012; Gao & Fang, 2016). Outliers can substantially affect statistical 

estimation results, including the covariance structure of variables, which in turn may lead to 

inaccurate estimation of principal components (Reisen et al., 2018; Cotta et al., 2020). 

Therefore, in the context of PCA, robust estimators are required to mitigate the impact of 

outliers (Cotta, 2019). 

Several studies have employed covariance or correlation matrices that are robust to 

outliers, including those by Cotta et al. (2020), Reisen et al. (2024), Cotta (2014), and Cotta et 

al. (2017). PCA methods incorporating robust covariance or correlation matrices have been 

specifically examined by Cotta et al. (2020) and Cotta (2014). For convenience, the PCA 

approach developed in these studies is referred to as Robust PCA (RPCA). In this study, Classical 

PCA refers to the approach of Reisen et al. (2024), which employs the Autocorrelation Function 

(ACF), but is implemented using the Autocovariance Function (ACOVF) via the acf() function in 

the stats package.  



1370  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1368-1384 

 

 

Reisen et al. (2024) demonstrated that robust covariance-based approaches are more 

stable to outliers in multivariate time series; however, their study was conducted using a factor-

modeling approach rather than through a direct comparison among Classical PCA, RPCA, and 

PCA of MTS applied to economic time-series data. Cotta (2014) primarily analyzed RPCA and 

Classical PCA at lag 0, whereas the present study extends this analysis by constructing total 

autocovariance matrices for lags 1 to 7 in the Classical and Robust PCA methods, following the 

approach of Reisen et al. (2024), who developed a factor-modeling scheme based on the sum of 

autocovariances across multiple lags. 

While these studies provided important insights into the robustness of covariance-based 

estimators, systematic comparative evaluations that jointly examine Classical PCA, RPCA, and 

PCA of MTS under varying correlation and outlier scenarios remain scarce. This study 

addresses that gap by comparing the three PCA approaches for dimensionality reduction of 

weekly multivariate time-series data on eight strategic food commodities across 70 districts 

and cities in Indonesia. It aims to evaluate Classical PCA, RPCA, and PCA of MTS through 

empirical analysis and Monte Carlo simulation based on a VAR(1) model to assess efficiency, 

effectiveness, reconstruction accuracy, and robustness to outliers and inter-variable 

correlations in Indonesia’s weekly CPI data. The main contribution of this research lies in 

providing a PCA-based comparative framework distinct from factor modeling, extending the 

application of RPCA and Classical PCA from lag 1 to 7, and comparing them with PCA of MTS 

using evaluation criteria encompassing component efficiency, effectiveness, cumulative 

variance proportion, and reconstruction accuracy. 

 

B. METHODS 

This study is a quantitative comparative study that combines empirical analysis and Monte 

Carlo simulation to compare three PCA approaches for dimensionality reduction in multivariate 

time series data, namely PCA of MTS, Classical PCA, and RPCA. The empirical analysis aims to 

evaluate the performance of these methods on real CPI data, while the simulation analysis 

provides a controlled setting to assess their robustness against outliers and varying correlation 

structures. Both analyses form an integrated approach that connects empirical interpretability 

with simulation-based validation. The primary distinction among these approaches lies in the 

estimation of the covariance or autocovariance matrix employed in the eigen decomposition 

process.  

1. Empirical Analysis Design 

The empirical analysis was conceptually structured into five main components: 

a. Data Preparation 

Weekly price data for eight strategic food commodities, namely rice, chicken eggs, 

shallots, garlic, red chili, bird’s eye chili, cooking oil, and sugar, were obtained from the 

National Strategic Food Price Information Center (Bank Indonesia, 2025) covering the 

period from July 21, 2021, to February 26, 2025. From the total of 74 districts/cities 

recorded, only 70 were included in the analysis, as four regions (Gorontalo and Banggai 

districts, Aceh Besar district, and Metro city) had insufficient data throughout the 

observation period. Two additional commodities, namely broiler chicken meat and beef, 

were excluded due to incomplete and inconsistent availability across locations.  
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Missing values were detected and, when present, imputed using linear interpolation. 

The Augmented Dickey-Fuller (ADF) test at the 10% significance level was used to assess 

stationarity. Non-stationary series were iteratively differenced until stationary, 

followed by mean-centering. The QS test (Molinaro & DeFalco, 2022) was applied to 

detect the presence of seasonal patterns, and its outcomes were later incorporated into 

simulation modeling when seasonal effects appeared in at least 20% of the series. For 

this purpose, the test was applied to weekly time series data that were converted into 

ts() objects with a frequency of 52. Although there are technically approximately 52.18 

weeks in a year, most R functions that utilize ts() objects require the frequency 

parameter to be specified as an integer (Hyndman & Athanasopoulos, 2018). 

b. PCA Modeling 

The dimensionality reduction was conducted using three PCA approaches. In the PCA of 

MTS, once the multivariate time series was verified to be stationary through the ADF test 

and subsequently mean-centered, the covariance matrix Γ̂  was constructed and 

subjected to eigendecomposition to obtain the sample principal components along with 

their associated eigenvalues and eigenvectors. The implementation was performed in R 

version 4.5.1 using the stats and tsqn packages for classical and robust autocovariance 

estimation, while PCA of MTS was implemented using the princomp() function following 

Wei (2019). For the Classical PCA and RPCA, eigendecomposition was applied to the 

total sample autocovariance matrix defined as 

 

𝑴̂ = ∑ 𝚪̂∗(ℎ)𝚪̂∗(ℎ)′

ℎ0

ℎ=1

 

 

(1) 

 

where 𝚪̂∗(ℎ)  corresponds to the sample autocovariance matrix at positive lag ℎ =

1, 2, … , ℎ0 . This procedure was repeated iteratively for ℎ0 = 1, 2, … , 7 . In the case of 

Classical PCA, 𝚪̂∗(ℎ)  was taken as the sample autocovariance matrix 𝚪̂(ℎ) , while for 

RPCA, 𝚪̂∗(ℎ) was defined as the robust autocovariance matrix 𝚪̂𝑄(ℎ) estimated using the 

scale estimator 𝑄𝑛(. ) (Reisen et al., 2024). The eigendecomposition of 𝑴̂ then yielded 

the estimated eigenvalues 𝜆̂𝑖 . 

c. Evaluation Design 

1) Efficiency and Effectiveness Evaluation 

The evaluation of efficiency and effectiveness began by comparing Classical PCA and 

RPCA under identical lag settings. The optimal lag was defined as the smallest lag 

within the range of 1 to 7 that produced a discernible difference in evaluation 

outcomes between the two methods, specifically when one demonstrated superior 

performance over the other. The superior method at this optimal lag was 

subsequently compared with PCA of MTS, and the final method was selected based on 

the criterion of yielding the fewest principal components.  

When the number of principal components was identical across methods, the method 

explaining the greater proportion of cumulative variance was considered more 

effective. The most efficient and effective approach was thus defined as the one 
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requiring the fewest components to achieve a minimum cumulative variance 

threshold of 85%, while retaining most of the data variability. 

2) Reconstruction Performance Evaluation 

The reconstruction performance of each method was evaluated by assessing its 

ability to reconstruct the preprocessed data, which included missing value 

imputation using linear interpolation, stationarity testing and differencing when 

necessary, and mean-centering, using three principal components. The preprocessed 

data were denoted as a matrix 𝑿 ∈ ℝ𝑛x𝑝 , where 𝑛  represents the number of time 

periods in the preprocessed dataset and 𝑝 corresponds to the number of commodities 

(eight in total). PCA analysis was conducted through the eigendecomposition of the 

covariance matrix of 𝑿 , yielding eigenvectors and eigenvalues, with the matrix of 

eigenvectors denoted as 𝑽. The number of principal components (PCs) used in the 

reconstruction process was determined as the maximum number of PCs across the 

three PCA approaches, each of which satisfied the minimum cumulative variance 

threshold of 85%. The orthonormal submatrix corresponding to the first three 

principal components was denoted as 𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ∈ ℝ𝑝x3 . The reduced principal 

component scores were computed as 

 

𝑼𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑿 ∙ 𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , (2) 

 

and the data were subsequently reconstructed as 

 

𝑿̂ = 𝑼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  ∙  𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑
𝑇 . (3) 

 

Reconstruction accuracy was assessed using the Root Mean Square Error (RMSE), 

defined as 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛 x 𝑝
∑ ∑(𝑋𝑖𝑗 − 𝑋̂𝑖𝑗)

2

𝑝

𝑗=1

𝑛

𝑖=1

 

(4) 

 

where 𝑋𝑖𝑗  denotes the preprocessed data value at the 𝑖-th row and 𝑗-th column, and 

𝑋̂𝑖𝑗 represents the reconstructed value obtained from the projection onto the first 

three principal components. A model was considered to demonstrate satisfactory 

performance when the RMSE was smaller than the standard deviation of both the 

observations and the reconstructed model (Liemohn et al., 2021), where the standard 

deviations were computed from the preprocessed data matrix 𝑿  and the 

reconstructed matrix 𝑿̂, respectively.  

The identification of the best method for reconstruction performance was carried out 

by comparing the RMSE values across the three principal components obtained from 

each approach. The method that yielded the lowest RMSE was considered superior, 
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with good performance defined by the criterion that the RMSE must be smaller than 

both the standard deviation of the observed data and that of the reconstructed data. 

 

d. Outlier Detection 

Following the confirmation of stationarity and the application of mean-centering, 

additive outliers were examined through the analysis of the autocovariance function 

(ACOVF) at the lag identified as optimal based on the PCA evaluation. The classical 

ACOVF was employed for Classical PCA, while the robust ACOVF, based on robust scale 

estimation, was utilized for RPCA. 

e. Visualization 

The results of the analysis were further complemented with visualization to support the 

evaluation of reconstruction performance. The projected PCA scores (𝑼𝑟𝑒𝑑𝑢𝑐𝑒𝑑) were 

plotted in a two-dimensional space defined by the first two principal components (PC1 

and PC2). To preserve directional and scaling proportionality in the graphical 

representation, 𝑼𝑟𝑒𝑑𝑢𝑐𝑒𝑑  was rescaled relative to 𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , thereby producing a 

visualization analogous to a biplot. This visualization illustrates both the temporal 

relationships across periods (rows of 𝑼𝑟𝑒𝑑𝑢𝑐𝑒𝑑) and the directional contributions of each 

commodity (columns of 𝑽𝑟𝑒𝑑𝑢𝑐𝑒𝑑) to the first two principal components. 

 

2. Simulation Analysis Design 

The simulation analysis in this study was conducted to replicate the key stages of the 

empirical analysis under controlled conditions, allowing for the evaluation of the three PCA 

approaches when the correlation structure and the presence of additive outliers were known 

in advance. The procedures followed the same conceptual structure as the empirical analysis, 

consisting of data preparation, PCA modeling, and evaluation of efficiency and effectiveness, 

but were applied to simulated datasets generated from a parametric VAR(1) process. The 

simulation analysis in this study was conducted through the following steps: 

a. Pre-Simulation Data 

The pre-simulation stage followed the same procedures as the empirical analysis, which 

included the collection of empirical data, detection and treatment of missing values, 

stationarity testing, and seasonal testing. 

b. Simulation Modelling 

The simulated data were generated based on a first-order Vector Autoregressive model 

without intercept (VAR(1)), with the process mean set to zero, formulated as: 

 

𝒀𝑡 = 𝚽𝒀𝑡−1 + 𝜺𝑡, 𝜺𝑡~𝑁𝑝(𝟎, 𝚪𝜀) (5) 

 

where  𝒀𝑡 ∈ ℝ𝑝  denotes the observation vector at time 𝑡 , 𝚽  is a 𝑝x𝑝  autoregressive 

coefficient matrix, and 𝚪𝜀 is the covariance matrix of the white noise process 𝜺𝑡 . The 

number of variables was fixed at 𝑝 = 8, while the number of time periods matched the 

length of the pre-simulation data. Parameters 𝚽 and 𝚪𝜀 were estimated from empirical 

data of a selected district/city using Maximum Likelihood estimation of the VAR(1) 
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model without intercept, with the residuals employed to compute 𝚪𝜀 . To ensure 

stationarity, 𝚽 was normalized according to: 

 

𝚽∗ =
0.5

max
 

|𝜆𝑖|
∙ 𝚽, 

(6) 

 

where 𝜆𝑖  are the eigenvalues of the estimated 𝚽. 

c. Correlation Structures 

To incorporate varying levels of cross-variable dependence, three correlation structures 

were considered. For the low correlation case, the covariance matrix was specified as a 

diagonal form, 

𝚪𝑙𝑜𝑤 = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑝

2) (7) 

 

where 𝜎𝑖  denotes the empirical residual standard deviation of variable 𝑖 . For the 

moderate and high correlation cases, the covariance structure was instead constructed 

by transforming a target correlation matrix 𝑹 into a covariance matrix using 

 

𝚪 = 𝑫 𝑹 𝑫, (8) 

 

where 𝑹 is a correlation matrix with constant off-diagonal entries of 0.4 (for moderate 

correlation) or 0.8 (for high correlation), and diagonal entries equal to 1. The diagonal 

scaling matrix is defined as 

 

𝑫 = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑝), (9) 

 

which contains the empirical residual standard deviations along its diagonal. 

d. Data Generation 

The data were generated over a predetermined number of time steps, with the initial 50 

observations discarded as a burn-in period to eliminate the influence of initial 

conditions. Only the remaining observations beyond the burn-in phase were retained 

and utilized as the primary simulated dataset for subsequent analysis. 

e. Formation of Simulation Datasets: With and Without Outliers 

Two types of simulated datasets were constructed, namely baseline datasets without 

outliers and datasets containing outliers. The baseline datasets were generated from the 

VAR(1) model for each category of inter-variable correlation. The datasets with outliers 

were obtained by injecting anomalies into the baseline datasets according to a 

combination of factors: (a) inter-variable correlation categories (low, moderate, and 

high), (b) outlier proportions (1%, 5%, and 15% of the total observations), (c) outlier 

magnitudes (4, 10, and 15 standard deviations of the residuals for each variable), and (d) 

outlier locations (restricted to the first variable or simultaneously across all variables). 

This design resulted in 18 outlier scenarios plus one baseline scenario for each 

correlation category, yielding a total of 19 scenarios per category. With 100 replications 

for each scenario, a total of 1,900 datasets were produced per correlation category, 
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amounting to 5,700 simulated datasets overall. The datasets containing outliers were 

generated through an injection process until the resulting series satisfied the 

stationarity criterion based on the ADF test at the 10% significance level. 

f. Preparation before PCA  

The simulated time series were first tested for stationarity using the ADF test at the 10% 

significance level and subsequently mean-centered prior to conducting the 

dimensionality reduction analysis. 

g. PCA Modeling 

Three dimensionality reduction approaches were applied, consistent with those 

employed in the empirical analysis. 

h. Evaluation of Efficiency and Effectiveness 

The evaluation of efficiency and effectiveness in the simulation data followed the same 

principles as in the empirical analysis, namely by assessing the dimensionality reduction 

performance based on the minimum number of principal components (PCs) required 

and the cumulative proportion of explained variance. For each scenario and method 

(Classical PCA, RPCA, and PCA of MTS), the average covariance matrix was computed 

across 100 simulation replications. Classical PCA and RPCA were applied over lags 

ranging from 1 to 7, whereas PCA of MTS was applied only once. All covariance matrices 

were subsequently subjected to eigendecomposition to obtain the proportion of 

variance explained. The identification of the best method was carried out based on 

efficiency and effectiveness criteria, selecting the approach that demonstrated the most 

favorable balance between the minimum number of principal components required and 

the cumulative proportion of explained variance. 

 

C. RESULT AND DISCUSSION 

The Results and Discussion section is organized into two main parts, namely the empirical 

data analysis and the simulation-based modelling analysis. The empirical data analysis 

encompasses the distribution and imputation of missing values, stationarity testing, seasonality 

testing, evaluation of the efficiency and effectiveness of dimensionality reduction, assessment 

of data reconstruction performance, detection of outliers, and visualization. Meanwhile, the 

simulation modelling analysis focuses on the process of data generation and the evaluation of 

PCA performance across various correlation scenarios, both in the absence and presence of 

outliers. 

1. Distribution and Imputation of Missing Data 

Prior to the main analysis, an initial exploration was conducted to assess the completeness 

of the dataset. The results indicated the presence of missing values in several commodities 

across a number of districts/cities. The proportion of missing data for the eight commodities in 

districts/cities with incomplete records is presented in Figure 1. 
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Figure 1. Percentage of Missing Data Across Eight Commodities  

for Districts/Cities With Incomplete Records 

 

Based on Figure 1, Pematang Siantar City exhibited the highest proportion of missing data 

at 6.55%. In contrast, 30 other districts/cities had no missing data and were therefore not 

included in the graph. These findings indicate the presence of missing values in certain regions, 

necessitating imputation prior to further analysis. To address this issue, a linear interpolation 

method was employed. As an illustration, Figure 2 presents a comparison of the data 

distribution before (a) and after (b) the imputation process in Pematang Siantar City, which 

represents the region with the highest proportion of missing data. 

 

 
(a) 

 
(b) 

Figure 2. Boxplot Visualization Results Before (a) and After (b) the Imputation Process for 

Commodity Data in Pematang Siantar City 
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Based on the visualization in Figure 2, the distributional patterns of the data did not exhibit 

any significant changes following the imputation process. The median, interquartile range 

(IQR), and overall distributional shape remained consistent between the pre- and post-

imputation datasets. This indicates that the application of linear interpolation did not 

substantially alter the statistical characteristics of the time series data. Consequently, the 

imputed data are deemed suitable for subsequent stages of analysis. All subsequent tests and 

analyses in this study were therefore conducted using data imputed through the linear 

interpolation method. Conceptually, the imputation step ensured that all three PCA approaches, 

namely Classical PCA, RPCA, and PCA of MTS, were evaluated under identical data conditions, 

thereby maintaining fairness and methodological consistency across both the empirical and 

simulation analyses. 

 

2. Stationarity Testing 

Stationarity is a fundamental assumption in the application of PCA to multivariate time 

series. To verify this assumption, the Augmented Dickey–Fuller (ADF) test was applied to eight 

commodities across 70 districts/cities. Three forms of data were examined: (1) data at level, 

denoted as I(0); (2) first-order differenced data, denoted as I(1); and (3) mean-centered I(1) 

data. Table 1 presents the percentage of districts/cities classified as stationary (S) and non-

stationary (NS) based on the results of the ADF test applied to 560 weekly time series (8 

commodities across 70 districts/cities). 

 

Table 1. Percentage of districts/cities classified as stationary (S) and non-stationary (NS) based on the 

results of the ADF test applied to 560 weekly time series (8 commodities across 70 districts/cities) 

Data Type S (%) NS (%) 

I(0) 43.21 56.79 

I(1) before MC 100 0 
I(1) after MC 100 0 

Notes: I(0) = data at level; I(1) = first-order differenced data; MC = mean-centering; S = stationary at 
the 10% significance level; NS = non-stationary at the 10% significance level. 

 

Based on Table 1, the majority of the level data were found to be non-stationary at the 10% 

significance level. However, after applying first-order differencing, all time series became 

stationary, both before and after mean-centering. Consequently, all subsequent PCA analyses, 

reconstruction procedures, and visualizations in this study were conducted using first-order 

differenced data that had been mean-centered. Conceptually, this preprocessing step ensured 

that the multivariate time series fulfilled the stationarity assumption required for PCA and 

established methodological consistency with the simulation design, where all generated series 

were designed to be stationary. 

 

3. Seasonality Testing 

The next step involved testing for the presence of seasonal patterns in the data through 

autocorrelation analysis at seasonal lags using the QS test. Three types of data were examined 

using the QS method: (1) level data (I(0)), (2) first-order differenced data (I(1)) before mean-

centering, and (3) I(1) data after mean-centering. Table 2 presents the percentage of time series 
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exhibiting seasonal and non-seasonal patterns based on the QS test applied to 560 weekly time 

series (covering eight commodities across 70 districts/cities). 

 

Table 2. Percentage of Time Series Indicating Seasonal and Non-Seasonal Patterns Based on the QS 

Test Applied to 560 Weekly Time Series (Eight Commodities Across 70 Districts/Cities) 

Data Type M (%) TM (%) 
I(0) 5.4 94.6 

I(1) before MC 6.1 93.9 
I(1) after MC 6.3 93.8 

Note: MC = Mean-centering; M = Time series indicating seasonal effects at the 10% significance level; 
TM = Time series not indicating seasonal effects at the 10% significance level. 

 

Table 2 indicates that, overall, the proportion of time series exhibiting evidence of seasonal 

effects at the 10% significance level is less than 20%. Consequently, seasonal effects were not 

further addressed in the subsequent analysis. Conceptually, this finding supports the short-

memory assumption adopted in the simulation model, where the absence of strong seasonal 

patterns justifies modeling the data using a VAR(1) process. 

 

4. Evaluation of Dimensionality Reduction Efficiency and Effectiveness 

The evaluation of the efficiency and effectiveness of dimensionality reduction considers the 

fact that the strongest correlations in multivariate time series generally occur at small lag 

values (Reisen et al., 2024). Accordingly, the selection of lags 1 through 7 for Classical PCA and 

RPCA follows the simulation procedure of Cotta et al. (2017) as well as the established practice 

of employing fixed positive lags in the study by Reisen et al. (2024). In contrast, the PCA of MTS 

approach is applied directly to the multivariate time series data without explicitly accounting 

for lag variation. The optimal lag selected in this study is lag 1, as it represents the smallest lag 

that consistently reveals differences in evaluation outcomes between Classical PCA and RPCA, 

both in terms of the minimum number of principal components required and the cumulative 

proportion of explained variance. Consequently, lag 1 was adopted as the basis for subsequent 

analyses involving these two methods. A summary of the comparative results between Classical 

PCA (lag 1), RPCA (lag 1), and PCA of MTS with respect to the minimum number of principal 

components needed to achieve a cumulative explained variance of at least 85% is presented in 

Table 3. 

 

Table 3. Summary of the optimal number of principal components from the comparative results 

between Classical PCA (lag 1), RPCA (lag 1), and PCA of MTS. 

Best Method Number of PCs 
Classical PCA (lag 1) 1 or 2 
RPCA (lag 1) 1 or 2 
PCA of MTS 2 or 3 

 

Based on Table 3, it can be observed that both Classical PCA and RPCA generally require 

only one to two principal components to achieve the 85% variance threshold. In contrast, PCA 

of MTS tends to require a larger number of principal components (two to three) to reach the 
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same level of explained variance. This finding indicates that, within the context of the present 

dataset, PCA of MTS is relatively less efficient and effective compared to the other two methods. 

As a result of this selection process, Classical PCA emerged as the best method for 33 

districts/cities, while RPCA was identified as the best method for 37 districts/cities. These 

findings indicate that RPCA demonstrates a slight advantage over Classical PCA in the context 

of the analyzed data, particularly in terms of the minimum number of principal components 

required and the cumulative proportion of variance explained at lag 1. Padang Sidempuan City 

is the only region that achieved a cumulative proportion of variance of 100%, exhibited no 

missing data, and attained the best results using the RPCA method at lag 1 with a single 

principal component. This result is consistent with Cotta (2014) and complements the insights 

of Reisen et al. (2024), indicating the advantage of RPCA in achieving stable and efficient 

dimensionality reduction. 

 

5. Reconstruction Performance Evaluation 

The evaluation of reconstruction performance was conducted by calculating the Root Mean 

Square Error (RMSE) between the pre-processed data and the reconstructed data obtained 

from three principal components, which were consistently applied across all methods. A model 

was categorized as having good performance if the RMSE value was smaller than both the 

standard deviation of the observations and the standard deviation of the reconstructed data, in 

accordance with the criteria established by Liemohn et al. (2021). The summary of the number 

and percentage of districts/cities based on the reconstruction performance criteria is 

presented in Table 4. 

 

Table 4. Summary of the Number and Percentage of Districts/Cities Based on Model Performance 

Criteria 

Method Good Model Performance Poor Model Performance 
Number Percentage (%) Number Percentage (%) 

Classical PCA (lag 1) 70 100 0 0 
RPCA (lag 1) 70 100 0 0 
PCA of MTS 70 100 0 0 

 

Based on Table 4, when using the first three principal components, Classical PCA (lag 1), 

PCA of MTS, and RPCA (lag 1) consistently achieved the best reconstruction performance across 

all districts/cities. To complement this evaluation, data reconstruction was also performed 

using all principal components without dimensionality reduction for the 70 districts/cities. The 

results revealed that the RMSE values were extremely small, ranging from 1.91×10⁻¹²  to 

8.67×10-12 for Classical PCA, 0 to 1×10-11 for RPCA, and 1.05×10⁻¹² to 1.14×10-11 for PCA of MTS. 

These near-zero values indicate that the full variability of the data can be almost perfectly 

reproduced when all principal components are employed. This suggests that the use of three 

principal components is sufficient to accurately represent the main structure of the data across 

all regions. Furthermore, the consistent reconstruction accuracy suggests that the empirical 

and simulation results are in good agreement, implying that dimensionality reduction using 

PCA tends to preserve the main data structure, in line with its theoretical purpose of retaining 

data variability. 
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6. Outlier Detection 

An outlier detection assessment was conducted by applying both classical and robust 

ACOVF analyses to the I(1) data after mean-centering at the optimal lag (lag 1). Consistent with 

Reisen et al. (2024), the classical and robust ACF exhibited similar patterns in the absence of 

additive outliers; however, the classical ACF was substantially distorted in the presence of 

additive outliers, whereas the robust ACF remained stable. Padang Sidempuan City was 

selected as a representative case study, as it contained no missing data and achieved a 

cumulative variance proportion of 100% using the RPCA method at lag 1 with a single principal 

component. Figure 3 presents a comparison of the ACOVF derived from Classical PCA and RPCA 

applied to the I(1) data after mean-centering in Padang Sidempuan City. 

 

 
(a) 

 
(b) 

Figure 3. Comparison of Classical (a) and Robust (b) ACOVF on I(1) Data After Mean-Centering  

in Padang Sidempuan City 

 

The visualization results presented in Figures 3(a) and 3(b) reveal that the classical ACOVF 

in Padang Sidempuan City produces elevated autocovariance values, indicating the presence of 

additive outliers. In contrast, the robust ACOVF demonstrates lower and more stable 

autocovariance values, reflecting its resilience against outliers. These findings provide clear 

evidence of additive outliers within the data. Conceptually, this result supports the simulation 

findings, indicating that RPCA provides more stable covariance estimation under additive 

outlier conditions. 

 

7. Visualization of Principal Components 

The visualization of the projection of the first two principal components (PC1 and PC2) 

obtained from the three PCA approaches, namely Classical PCA (lag 1), RPCA (lag 1), and PCA 

of MTS, was conducted for a representative region, namely Padang Sidempuan City, to illustrate 

the temporal relationships across observation periods as well as the contribution of each 

commodity to the overall data variability. For ease of visual interpretation, the eight 

commodities were denoted as follows: V1 for Rice, V2 for Egg, V3 for Shallot, V4 for Garlic, V5 

for Red Chili, V6 for Bird’s Eye Chili, V7 for Cooking Oil, and V8 for Sugar. The visualization of 

the projection of the first two principal components for Padang Sidempuan City using the three 

PCA methods is presented in Figure 4, corresponding to Classical PCA (a), RPCA (b), and PCA of 

MTS (c). 
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(a) 

 
(b) 

 
(c) 

Figure 4. Visualization of the Projection of the First Two Principal Components in Padang 

Sidempuan City: (a) Classical PCA (Lag 1), (b) RPCA (Lag 1), and (c) PCA of MTS 

 

Based on Figure 4, Red Chili is identified as the commodity with a consistently dominant 

contribution across all PCA approaches in Padang Sidempuan City. Conceptually, this pattern 

indicates that the main sources of variability captured by Classical PCA, RPCA, and PCA of MTS 

are consistent, suggesting that the empirical and simulation analyses are in agreement in 

identifying dominant variables driving joint price dynamics. 

 

8. Simulation-Based Modeling 

The simulation analysis indicates that the data generation process satisfies the 

assumptions of a VAR(1) model, with a stationary coefficient matrix 𝚽  and a disturbance 

covariance matrix 𝚪𝜀  that is symmetric and positive definite. Based on simulations without 

outliers, three categories of inter-variable correlation levels, namely low, moderate, and high, 

were identified, as visualized in Figure 5. 

 

 
Figure 5. Boxplot of Mean Absolute Correlation and Mean Correlation from Simulation Results 

Without Outliers for Low, Moderate, and High Correlation Categories 

 

Based on Figure 5, the mean absolute correlation values among variables range from 

0.0352 to 0.0929 for the low correlation category, 0.2896 to 0.4265 for the moderate category, 

and 0.6826 to 0.7752 for the high category. Meanwhile, the mean correlation values 

(accounting for the sign) vary between -0.0291 and 0.035 for the low correlation category, 
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0.2896 to 0.4265 for the moderate category, and 0.6826 to 0.7752 for the high category. 

Furthermore, the ADF test confirmed that all simulated datasets, both the baseline and those 

containing outliers, were stationary at the 10% significance level. Conceptually, these 

simulation results are consistent with the empirical findings, reinforcing the integration 

between empirical analysis and simulation-based validation while successfully reflecting short-

memory dynamics and inter-variable relationships observed in the data. 

 

9. Evaluation of PCA Methods on Simulated Data 

The evaluation of PCA methods on simulated data was conducted with respect to 

cumulative variance proportion, the number of principal components (PCs), and optimal lag 

across various simulation scenarios. The results indicate that only under the scenario 

characterized by high correlation, outliers present in all variables, large magnitude (15), and a 

low proportion of outliers (1%), Classical PCA achieved the best performance, with a single 

principal component explaining 90.68% of the variance at lag 2. In all other scenarios, the 

method demonstrating superior performance was RPCA, as summarized in Table 5. 

 

Table 5. Average Variance Proportion, Number of Principal Components, and Optimal Lag by RPCA 

Correlation Outlier Condition Proportion (%) Average PC Optimal Lag 
Low Without Outliers 93.46 2 1 

All Variables 93.51 2 1 

First Variable 93.46 2 1 

Moderate Without Outliers 95.11 2 1 

All Variables 94.83 2 1 

First Variable 95.11 2 1 

High Without Outliers 90.68 1 1 
All Variables 90.01 1 1 
First Variable 90.68 1 1 

Overall Scenarios 92.99 1.68 1 

 

Table 5 indicates that RPCA consistently emerges as the most efficient and effective method, 

achieving an average variance proportion of 92.99%, with a relatively low average number of 

principal components (1.68), an optimal lag consistently identified at lag 1, and stable 

performance even in the presence of outliers. To further support this result, the autocovariance 

behavior was visually examined to illustrate how outliers influence the stability of classical and 

robust estimators. Visual inspection of the autocovariance behavior (Figure 3) shows that 

classical ACOVF produces elevated autocovariance values due to outliers, whereas the robust 

ACOVF remains more stable, consistent with the robust ACF behavior reported by Reisen et al. 

(2024). The simulation results confirm that the strongest correlations occur at small lags, while 

autocovariance estimation becomes less accurate at larger lags (Reisen et al., 2024), with lag 1 

identified as the optimal lag. Unlike Reisen et al. (2024), who implemented a factor modeling 

approach based on the summation of autocovariances, and Cotta (2014), who compared RPCA 

and Classical PCA only at lag 0, this study also includes PCA of MTS within a short-memory 

VAR(1) setting under three levels of inter-variable correlation. Within this structure, both 

Classical PCA and RPCA were constructed from the summation of autocovariances across 
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several lags, while RPCA achieved the highest efficiency and variance proportion, with Classical 

PCA outperforming only under high-correlation, low-outlier conditions. 

 

D. CONCLUSION AND SUGGESTIONS 

This study synthesizes empirical and simulation-based analyses to evaluate three PCA 

approaches, namely Classical PCA, RPCA, and PCA of MTS, for dimensionality reduction of 

strategic food price data in Indonesia. Both Classical PCA (lag 1) and RPCA (lag 1) proved to be 

efficient and effective, requiring only one to two principal components to explain at least 85% 

of the total variance. At the optimal lag (lag 1), RPCA demonstrated the most stable and 

consistent performance, particularly in the presence of outliers, whereas Classical PCA (lag 2) 

was superior only in scenarios with high inter-variable correlation and a low proportion of 

outliers. On average, RPCA achieved 92.99% of explained variance with a relatively small 

number of components (1.68). Scientifically, these findings emphasize that robust covariance 

estimation plays an essential role and is indicated to enhance dimensionality-reduction 

accuracy while maintaining the stability of multivariate analysis under imperfect data 

conditions. Practically, the application of RPCA is indicated to improve the accuracy of price 

monitoring and policy evaluation in the food sector. Future research is encouraged to develop 

high-dimensional or long-memory robust models to strengthen the resilience and flexibility of 

analysis when dealing with more complex data characteristics. 
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