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Multivariate time series (MTS) analysis of the Consumer Price Index (CPI) in
Indonesia often encounters challenges such as outliers, missing data, and inter-
variable correlations. Principal Component Analysis (PCA) is a practical approach
for dimensionality reduction; however, its performance may vary depending on the
data characteristics. This study is a quantitative comparative study that integrates
empirical analysis and Monte Carlo simulation based on a first-order Vector
Autoregressive (VAR(1)) model to evaluate three PCA approaches: Classical PCA,
Robust PCA (RPCA), and PCA of MTS. These methods were applied to weekly price
data of eight strategic food commodities across 70 districts and cities in Indonesia.
The evaluation employed three criteria: (1) dimensionality reduction efficiency
(empirical and simulation), (2) reconstruction accuracy measured using Root Mean
Square Error (RMSE) (empirical), and (3) robustness to outliers and inter-variable
correlations (simulation). Empirical results indicate that Classical PCA (lag 1) and
RPCA (lag 1) are both efficient and effective in reducing dimensionality with
minimal information loss. Using the first three principal components, all three
methods were able to explain at least 85% of the total variance, with lag 1 identified
as optimal. Simulation results reveal that RPCA (lag 1) provides the most stable and
consistent performance in the presence of outliers, while Classical PCA (lag 2)
performs better under conditions of high inter-variable correlation and a low
proportion of outliers. These findings suggest that robust covariance estimation
can improve the accuracy of dimensionality reduction and enhance the stability of
multivariate time-series analysis for food price data in Indonesia.

d ; Crossref M
https://doi.org/10.31764 /jtam.v10i1.34151 This is an open access article under the CC-BY-SA license

A. INTRODUCTION

*

Various challenges in the analysis of multivariate time series, such as missing data, outliers,
and inter-variable correlations, are frequently encountered in weekly Consumer Price Index
(CPI) data across 70 districts/cities in Indonesia. Such complexities can hinder the estimation
process and reduce the accuracy of predictive outcomes. Handling missing data is a common
challenge in data analysis. In this regard, imputing missing values often becomes a crucial step
in data analysis (Stekhoven & Biithlmann, 2012). This issue is especially relevant in the context
of Indonesia’s weekly CPI data, which often contain gaps due to reporting delays and
irregularities across regions. The mechanism underlying missing data plays a critical role in
determining the appropriate handling method. Three types of mechanisms are commonly
distinguished: Missing Completely at Random (MCAR), Missing at Random (MAR), and Not
Missing at Random (NMAR) (Little & Rubin, 2002; Lotfipoor et al., 2023).
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The choice of imputation method also depends on the type and structure of the data.
Moreover, algorithms commonly used in the analysis of large-scale data often rely on a
complete dataset (Stekhoven & Biithlmann, 2012). For univariate data, linear interpolation can
be employed. This method imputes missing values by drawing a straight line between the last
observed data point and the first subsequent observed data point following the missing value
(Sumertajaya et al., 2023). Linear interpolation has been extensively studied and implemented
in the imputeTS package by (Moritz & Bartz-Beielstein, 2017). In this study, imputation was
applied to empirical CPI data to ensure that the three Principal Component Analysis (PCA)
approaches, namely Classical PCA, Robust PCA (RPCA), and PCA of Multivariate Time Series
(PCA of MTS), were evaluated under comparable conditions.

In addition to imputation, dimensionality reduction constitutes the next step in addressing
multivariate datasets. PCA is a widely used and effective method for reducing dimensionality
while retaining most of the data variability (Zamprogno et al., 2020). Several extensions of PCA
have been developed to address challenges in the analysis of multivariate time series. Wei
(2019) introduced the theoretical foundation of PCA for Multivariate Time Series (MTS), which
in this study is referred to as PCA of MTS. Alshammri & Pan (2021) developed Moving Dynamic
Principal Component Analysis (MDPCA) to address dynamic dependencies in non-stationary
data. Zhao & Shang (2016) introduced Non-Stationary Principal Component Analysis (NSPCA),
while Sundararajan (2021) proposed a frequency component-based PCA approach for the
segmentation of multivariate time series. However, most of these developments focus on
methodological extensions rather than systematic performance comparisons across PCA
variants under realistic data conditions involving outliers, correlations, and autocovariance
structures.

Since PCA is constructed based on the sample covariance or correlation matrix, the
technique is highly sensitive to outliers, which may lead to misleading dimensionality reduction
results (Cotta, 2019). An outlier is an observation that falls well above or well below the overall
bulk of the data (Agresti et al., 2023). The presence of outliers may arise from errors in data
recording, unusual but explainable events in observations, measurement errors, analytical
mistakes, instrument failures, experimental errors, or substantial variability within the data
(Montgomery et al, 2012; Gao & Fang, 2016). Outliers can substantially affect statistical
estimation results, including the covariance structure of variables, which in turn may lead to
inaccurate estimation of principal components (Reisen et al., 2018; Cotta et al., 2020).
Therefore, in the context of PCA, robust estimators are required to mitigate the impact of
outliers (Cotta, 2019).

Several studies have employed covariance or correlation matrices that are robust to
outliers, including those by Cotta et al. (2020), Reisen et al. (2024), Cotta (2014), and Cotta et
al. (2017). PCA methods incorporating robust covariance or correlation matrices have been
specifically examined by Cotta et al. (2020) and Cotta (2014). For convenience, the PCA
approach developed in these studies is referred to as Robust PCA (RPCA). In this study, Classical
PCA refers to the approach of Reisen et al. (2024), which employs the Autocorrelation Function
(ACF), but is implemented using the Autocovariance Function (ACOVF) via the acf{) function in
the stats package.
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Reisen et al. (2024) demonstrated that robust covariance-based approaches are more
stable to outliers in multivariate time series; however, their study was conducted using a factor-
modeling approach rather than through a direct comparison among Classical PCA, RPCA, and
PCA of MTS applied to economic time-series data. Cotta (2014) primarily analyzed RPCA and
Classical PCA at lag 0, whereas the present study extends this analysis by constructing total
autocovariance matrices for lags 1 to 7 in the Classical and Robust PCA methods, following the
approach of Reisen et al. (2024), who developed a factor-modeling scheme based on the sum of
autocovariances across multiple lags.

While these studies provided important insights into the robustness of covariance-based
estimators, systematic comparative evaluations that jointly examine Classical PCA, RPCA, and
PCA of MTS under varying correlation and outlier scenarios remain scarce. This study
addresses that gap by comparing the three PCA approaches for dimensionality reduction of
weekly multivariate time-series data on eight strategic food commodities across 70 districts
and cities in Indonesia. It aims to evaluate Classical PCA, RPCA, and PCA of MTS through
empirical analysis and Monte Carlo simulation based on a VAR(1) model to assess efficiency,
effectiveness, reconstruction accuracy, and robustness to outliers and inter-variable
correlations in Indonesia’s weekly CPI data. The main contribution of this research lies in
providing a PCA-based comparative framework distinct from factor modeling, extending the
application of RPCA and Classical PCA from lag 1 to 7, and comparing them with PCA of MTS
using evaluation criteria encompassing component efficiency, effectiveness, cumulative
variance proportion, and reconstruction accuracy.

B. METHODS
This study is a quantitative comparative study that combines empirical analysis and Monte
Carlo simulation to compare three PCA approaches for dimensionality reduction in multivariate
time series data, namely PCA of MTS, Classical PCA, and RPCA. The empirical analysis aims to
evaluate the performance of these methods on real CPI data, while the simulation analysis
provides a controlled setting to assess their robustness against outliers and varying correlation
structures. Both analyses form an integrated approach that connects empirical interpretability
with simulation-based validation. The primary distinction among these approaches lies in the
estimation of the covariance or autocovariance matrix employed in the eigen decomposition
process.
1. Empirical Analysis Design
The empirical analysis was conceptually structured into five main components:
a. Data Preparation
Weekly price data for eight strategic food commodities, namely rice, chicken eggs,
shallots, garlic, red chili, bird’s eye chili, cooking oil, and sugar, were obtained from the
National Strategic Food Price Information Center (Bank Indonesia, 2025) covering the
period from July 21, 2021, to February 26, 2025. From the total of 74 districts/cities
recorded, only 70 were included in the analysis, as four regions (Gorontalo and Banggai
districts, Aceh Besar district, and Metro city) had insufficient data throughout the
observation period. Two additional commodities, namely broiler chicken meat and beef,
were excluded due to incomplete and inconsistent availability across locations.
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Missing values were detected and, when present, imputed using linear interpolation.
The Augmented Dickey-Fuller (ADF) test at the 10% significance level was used to assess
stationarity. Non-stationary series were iteratively differenced until stationary,
followed by mean-centering. The QS test (Molinaro & DeFalco, 2022) was applied to
detect the presence of seasonal patterns, and its outcomes were later incorporated into
simulation modeling when seasonal effects appeared in at least 20% of the series. For
this purpose, the test was applied to weekly time series data that were converted into
ts() objects with a frequency of 52. Although there are technically approximately 52.18
weeks in a year, most R functions that utilize ts() objects require the frequency
parameter to be specified as an integer (Hyndman & Athanasopoulos, 2018).

. PCA Modeling

The dimensionality reduction was conducted using three PCA approaches. In the PCA of
MTS, once the multivariate time series was verified to be stationary through the ADF test
and subsequently mean-centered, the covariance matrix I' was constructed and
subjected to eigendecomposition to obtain the sample principal components along with
their associated eigenvalues and eigenvectors. The implementation was performed in R
version 4.5.1 using the stats and tsqn packages for classical and robust autocovariance
estimation, while PCA of MTS was implemented using the princomp() function following
Wei (2019). For the Classical PCA and RPCA, eigendecomposition was applied to the
total sample autocovariance matrix defined as

ho
M= Z (WP (h) 1)
h=1

where I'*(h) corresponds to the sample autocovariance matrix at positive lag h =
1,2, ..., hy. This procedure was repeated iteratively for hy = 1,2, ..., 7. In the case of
Classical PCA, I'*(h) was taken as the sample autocovariance matrix I'(h), while for
RPCA, I'*(h) was defined as the robust autocovariance matrix I'? (h) estimated using the
scale estimator Q,,(.) (Reisen et al,, 2024). The eigendecomposition of M then yielded
the estimated eigenvalues ;.
. Evaluation Design
1) Efficiency and Effectiveness Evaluation
The evaluation of efficiency and effectiveness began by comparing Classical PCA and
RPCA under identical lag settings. The optimal lag was defined as the smallest lag
within the range of 1 to 7 that produced a discernible difference in evaluation
outcomes between the two methods, specifically when one demonstrated superior
performance over the other. The superior method at this optimal lag was
subsequently compared with PCA of MTS, and the final method was selected based on
the criterion of yielding the fewest principal components.
When the number of principal components was identical across methods, the method
explaining the greater proportion of cumulative variance was considered more
effective. The most efficient and effective approach was thus defined as the one
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requiring the fewest components to achieve a minimum cumulative variance
threshold of 85%, while retaining most of the data variability.
2) Reconstruction Performance Evaluation

The reconstruction performance of each method was evaluated by assessing its
ability to reconstruct the preprocessed data, which included missing value
imputation using linear interpolation, stationarity testing and differencing when
necessary, and mean-centering, using three principal components. The preprocessed
data were denoted as a matrix X € R™P, where n represents the number of time
periods in the preprocessed datasetand p corresponds to the number of commodities
(eight in total). PCA analysis was conducted through the eigendecomposition of the
covariance matrix of X, yielding eigenvectors and eigenvalues, with the matrix of
eigenvectors denoted as V. The number of principal components (PCs) used in the
reconstruction process was determined as the maximum number of PCs across the
three PCA approaches, each of which satisfied the minimum cumulative variance
threshold of 85%. The orthonormal submatrix corresponding to the first three
principal components was denoted as V,.gyceq € RP*3 . The reduced principal
component scores were computed as

Ureaucea = X * Vrvedaucear (2)

and the data were subsequently reconstructed as

=

X = Urequcea - V17:educed' (3)

Reconstruction accuracy was assessed using the Root Mean Square Error (RMSE),
defined as

1

n
nXpi:lj

(Xi; = %)

1

RMSE =

p (4)

where X;; denotes the preprocessed data value at the i-th row and j-th column, and
)?l-j represents the reconstructed value obtained from the projection onto the first
three principal components. A model was considered to demonstrate satisfactory
performance when the RMSE was smaller than the standard deviation of both the
observations and the reconstructed model (Liemohn etal.,, 2021), where the standard
deviations were computed from the preprocessed data matrix X and the
reconstructed matrix X, respectively.

The identification of the best method for reconstruction performance was carried out
by comparing the RMSE values across the three principal components obtained from
each approach. The method that yielded the lowest RMSE was considered superior,
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with good performance defined by the criterion that the RMSE must be smaller than
both the standard deviation of the observed data and that of the reconstructed data.

d. Outlier Detection
Following the confirmation of stationarity and the application of mean-centering,
additive outliers were examined through the analysis of the autocovariance function
(ACOVF) at the lag identified as optimal based on the PCA evaluation. The classical
ACOVF was employed for Classical PCA, while the robust ACOVF, based on robust scale
estimation, was utilized for RPCA.

e. Visualization
The results of the analysis were further complemented with visualization to support the
evaluation of reconstruction performance. The projected PCA scores (U, ¢qyceqd) Were
plotted in a two-dimensional space defined by the first two principal components (PC1
and PC2). To preserve directional and scaling proportionality in the graphical
representation, U,.4yceq Was rescaled relative to V,.gyuceq, thereby producing a
visualization analogous to a biplot. This visualization illustrates both the temporal
relationships across periods (rows of U,..4,ceq) and the directional contributions of each
commodity (columns of V.. 4,,ceq) to the first two principal components.

2. Simulation Analysis Design
The simulation analysis in this study was conducted to replicate the key stages of the
empirical analysis under controlled conditions, allowing for the evaluation of the three PCA
approaches when the correlation structure and the presence of additive outliers were known
in advance. The procedures followed the same conceptual structure as the empirical analysis,
consisting of data preparation, PCA modeling, and evaluation of efficiency and effectiveness,
but were applied to simulated datasets generated from a parametric VAR(1) process. The
simulation analysis in this study was conducted through the following steps:
a. Pre-Simulation Data
The pre-simulation stage followed the same procedures as the empirical analysis, which
included the collection of empirical data, detection and treatment of missing values,
stationarity testing, and seasonal testing.
b. Simulation Modelling
The simulated data were generated based on a first-order Vector Autoregressive model
without intercept (VAR(1)), with the process mean set to zero, formulated as:

where Y; € RP denotes the observation vector at time t, ® is a pxp autoregressive
coefficient matrix, and I is the covariance matrix of the white noise process &;. The
number of variables was fixed at p = 8, while the number of time periods matched the
length of the pre-simulation data. Parameters ® and I, were estimated from empirical
data of a selected district/city using Maximum Likelihood estimation of the VAR(1)
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model without intercept, with the residuals employed to computeI,. To ensure
stationarity, ® was normalized according to:

._ 05 (6)
max|4;|

where A; are the eigenvalues of the estimated ®.

c. Correlation Structures
To incorporate varying levels of cross-variable dependence, three correlation structures
were considered. For the low correlation case, the covariance matrix was specified as a
diagonal form,

Tow = diag(of, ..., 07) (7)

where o0; denotes the empirical residual standard deviation of variable i. For the
moderate and high correlation cases, the covariance structure was instead constructed
by transforming a target correlation matrix R into a covariance matrix using

r=DRD, (8)

where R is a correlation matrix with constant off-diagonal entries of 0.4 (for moderate
correlation) or 0.8 (for high correlation), and diagonal entries equal to 1. The diagonal
scaling matrix is defined as

D= diag(al, ...,ap), 9)

which contains the empirical residual standard deviations along its diagonal.

d. Data Generation
The data were generated over a predetermined number of time steps, with the initial 50
observations discarded as a burn-in period to eliminate the influence of initial
conditions. Only the remaining observations beyond the burn-in phase were retained
and utilized as the primary simulated dataset for subsequent analysis.

e. Formation of Simulation Datasets: With and Without Outliers
Two types of simulated datasets were constructed, namely baseline datasets without
outliers and datasets containing outliers. The baseline datasets were generated from the
VAR(1) model for each category of inter-variable correlation. The datasets with outliers
were obtained by injecting anomalies into the baseline datasets according to a
combination of factors: (a) inter-variable correlation categories (low, moderate, and
high), (b) outlier proportions (1%, 5%, and 15% of the total observations), (c) outlier
magnitudes (4, 10, and 15 standard deviations of the residuals for each variable), and (d)
outlier locations (restricted to the first variable or simultaneously across all variables).
This design resulted in 18 outlier scenarios plus one baseline scenario for each
correlation category, yielding a total of 19 scenarios per category. With 100 replications
for each scenario, a total of 1,900 datasets were produced per correlation category,
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amounting to 5,700 simulated datasets overall. The datasets containing outliers were
generated through an injection process until the resulting series satisfied the
stationarity criterion based on the ADF test at the 10% significance level.

f. Preparation before PCA
The simulated time series were first tested for stationarity using the ADF test at the 10%
significance level and subsequently mean-centered prior to conducting the
dimensionality reduction analysis.

g. PCA Modeling
Three dimensionality reduction approaches were applied, consistent with those
employed in the empirical analysis.

h. Evaluation of Efficiency and Effectiveness
The evaluation of efficiency and effectiveness in the simulation data followed the same
principles as in the empirical analysis, namely by assessing the dimensionality reduction
performance based on the minimum number of principal components (PCs) required
and the cumulative proportion of explained variance. For each scenario and method
(Classical PCA, RPCA, and PCA of MTS), the average covariance matrix was computed
across 100 simulation replications. Classical PCA and RPCA were applied over lags
ranging from 1 to 7, whereas PCA of MTS was applied only once. All covariance matrices
were subsequently subjected to eigendecomposition to obtain the proportion of
variance explained. The identification of the best method was carried out based on
efficiency and effectiveness criteria, selecting the approach that demonstrated the most
favorable balance between the minimum number of principal components required and
the cumulative proportion of explained variance.

C. RESULT AND DISCUSSION

The Results and Discussion section is organized into two main parts, namely the empirical
data analysis and the simulation-based modelling analysis. The empirical data analysis
encompasses the distribution and imputation of missing values, stationarity testing, seasonality
testing, evaluation of the efficiency and effectiveness of dimensionality reduction, assessment
of data reconstruction performance, detection of outliers, and visualization. Meanwhile, the
simulation modelling analysis focuses on the process of data generation and the evaluation of
PCA performance across various correlation scenarios, both in the absence and presence of
outliers.
1. Distribution and Imputation of Missing Data

Prior to the main analysis, an initial exploration was conducted to assess the completeness
of the dataset. The results indicated the presence of missing values in several commodities
across a number of districts/cities. The proportion of missing data for the eight commodities in
districts/cities with incomplete records is presented in Figure 1.
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Distribution of Missing Data Percentage on 8 Commodities

Only Regencies or Cities with Missing Data
Pematang Siantar City 6.55%
Temate City
Cilacap Regency
Banyumas Regency
Jayapura City
Samarinda City
Balikpapan City
Lhokseumawe City
Palu City
Cirebon City
Meulaboh City
Padang City
Tembilahan City
Pekanbaru City
Maumere City
Kupang City
Sumba Timur Regency
Batam City
Bulungan Regency
Gorontalo City
Dumai City
Bengkulu City
Palsmbang City
Tual City
Bukittinggi City
Mataram City
Ambon City

Regency or City

Bandar Lampung City
Pangkal Pinang City
Tarakan Gity
Surabaya City
Jember Regency
Banyuwangi Regency
Semarang City
Yogyakarta City
Banda Aceh City

Mamuju City 0.13%
Banjarmasin City 0.07%
Probolinggo City 0.07%
Bandung City 0.07%
0 2 4 6

Missing Data Percentage (%)

Figure 1. Percentage of Missing Data Across Eight Commodities
for Districts/Cities With Incomplete Records

Based on Figure 1, Pematang Siantar City exhibited the highest proportion of missing data
at 6.55%. In contrast, 30 other districts/cities had no missing data and were therefore not
included in the graph. These findings indicate the presence of missing values in certain regions,
necessitating imputation prior to further analysis. To address this issue, a linear interpolation
method was employed. As an illustration, Figure 2 presents a comparison of the data
distribution before (a) and after (b) the imputation process in Pematang Siantar City, which
represents the region with the highest proportion of missing data.

Boxplot Before Imputation - Pematang Siantar City Boxplot After Imputation - Pematang Siantar City
. .
80000 - 80000 .
s ; Commadity . : Commodity
! : BS Birds EyeChii ¥ : B3 Bird.s Eye.Chil
80000 . ES cooking.0i 60000 . B3 cooking.0l
» . === ® . ==
s B G 2 B8 caric
= 40000 B8 Red.chil = 40000 B8 Red.chil
BS Rice B8 Rice
+ B3 shaliot B3 shallot
20000 * Sugar 20000 ‘ Sugar
& N o o o . N N & & © & . N
& L o G){,\\C & R o & S
&S o S <
5 & & f
¢
Commodity Commadity

(a) (b)
Figure 2. Boxplot Visualization Results Before (a) and After (b) the Imputation Process for
Commodity Data in Pematang Siantar City
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Based on the visualization in Figure 2, the distributional patterns of the data did not exhibit
any significant changes following the imputation process. The median, interquartile range
(IQR), and overall distributional shape remained consistent between the pre- and post-
imputation datasets. This indicates that the application of linear interpolation did not
substantially alter the statistical characteristics of the time series data. Consequently, the
imputed data are deemed suitable for subsequent stages of analysis. All subsequent tests and
analyses in this study were therefore conducted using data imputed through the linear
interpolation method. Conceptually, the imputation step ensured that all three PCA approaches,
namely Classical PCA, RPCA, and PCA of MTS, were evaluated under identical data conditions,
thereby maintaining fairness and methodological consistency across both the empirical and
simulation analyses.

2. Stationarity Testing

Stationarity is a fundamental assumption in the application of PCA to multivariate time
series. To verify this assumption, the Augmented Dickey-Fuller (ADF) test was applied to eight
commodities across 70 districts/cities. Three forms of data were examined: (1) data at level,
denoted as 1(0); (2) first-order differenced data, denoted as I(1); and (3) mean-centered I(1)
data. Table 1 presents the percentage of districts/cities classified as stationary (S) and non-
stationary (NS) based on the results of the ADF test applied to 560 weekly time series (8
commodities across 70 districts/cities).

Table 1. Percentage of districts/cities classified as stationary (S) and non-stationary (NS) based on the
results of the ADF test applied to 560 weekly time series (8 commodities across 70 districts/cities)

Data Type S (%) NS (%)
1(0) 43.21 56.79
I(1) before MC 100 0
(1) after MC 100 0

Notes: [(0) = data at level; I(1) = first-order differenced data; MC = mean-centering; S = stationary at
the 10% significance level; NS = non-stationary at the 10% significance level.

Based on Table 1, the majority of the level data were found to be non-stationary at the 10%
significance level. However, after applying first-order differencing, all time series became
stationary, both before and after mean-centering. Consequently, all subsequent PCA analyses,
reconstruction procedures, and visualizations in this study were conducted using first-order
differenced data that had been mean-centered. Conceptually, this preprocessing step ensured
that the multivariate time series fulfilled the stationarity assumption required for PCA and
established methodological consistency with the simulation design, where all generated series
were designed to be stationary.

3. Seasonality Testing

The next step involved testing for the presence of seasonal patterns in the data through
autocorrelation analysis at seasonal lags using the QS test. Three types of data were examined
using the QS method: (1) level data (I(0)), (2) first-order differenced data (I(1)) before mean-
centering, and (3) I(1) data after mean-centering. Table 2 presents the percentage of time series
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exhibiting seasonal and non-seasonal patterns based on the QS test applied to 560 weekly time
series (covering eight commodities across 70 districts/cities).

Table 2. Percentage of Time Series Indicating Seasonal and Non-Seasonal Patterns Based on the QS
Test Applied to 560 Weekly Time Series (Eight Commodities Across 70 Districts/Cities)

Data Type M (%) T™ (%)
1(0) 5.4 94.6
(1) before MC 6.1 93.9
I(1) after MC 6.3 93.8

Note: MC = Mean-centering; M = Time series indicating seasonal effects at the 10% significance level;
TM = Time series not indicating seasonal effects at the 10% significance level.

Table 2 indicates that, overall, the proportion of time series exhibiting evidence of seasonal
effects at the 10% significance level is less than 20%. Consequently, seasonal effects were not
further addressed in the subsequent analysis. Conceptually, this finding supports the short-
memory assumption adopted in the simulation model, where the absence of strong seasonal
patterns justifies modeling the data using a VAR(1) process.

4. Evaluation of Dimensionality Reduction Efficiency and Effectiveness

The evaluation of the efficiency and effectiveness of dimensionality reduction considers the
fact that the strongest correlations in multivariate time series generally occur at small lag
values (Reisen et al., 2024). Accordingly, the selection of lags 1 through 7 for Classical PCA and
RPCA follows the simulation procedure of Cotta et al. (2017) as well as the established practice
of employing fixed positive lags in the study by Reisen et al. (2024). In contrast, the PCA of MTS
approach is applied directly to the multivariate time series data without explicitly accounting
for lag variation. The optimal lag selected in this study is lag 1, as it represents the smallest lag
that consistently reveals differences in evaluation outcomes between Classical PCA and RPCA,
both in terms of the minimum number of principal components required and the cumulative
proportion of explained variance. Consequently, lag 1 was adopted as the basis for subsequent
analyses involving these two methods. A summary of the comparative results between Classical
PCA (lag 1), RPCA (lag 1), and PCA of MTS with respect to the minimum number of principal
components needed to achieve a cumulative explained variance of at least 85% is presented in
Table 3.

Table 3. Summary of the optimal number of principal components from the comparative results
between Classical PCA (lag 1), RPCA (lag 1), and PCA of MTS.

Best Method Number of PCs
Classical PCA (lag 1) 1or2
RPCA (lag 1) 1or?2
PCA of MTS 2o0r3

Based on Table 3, it can be observed that both Classical PCA and RPCA generally require
only one to two principal components to achieve the 85% variance threshold. In contrast, PCA
of MTS tends to require a larger number of principal components (two to three) to reach the



I Made Sumertajaya, Dimensionality Reduction Evaluation of Multivariate... 1379

same level of explained variance. This finding indicates that, within the context of the present
dataset, PCA of MTS is relatively less efficient and effective compared to the other two methods.

As a result of this selection process, Classical PCA emerged as the best method for 33
districts/cities, while RPCA was identified as the best method for 37 districts/cities. These
findings indicate that RPCA demonstrates a slight advantage over Classical PCA in the context
of the analyzed data, particularly in terms of the minimum number of principal components
required and the cumulative proportion of variance explained at lag 1. Padang Sidempuan City
is the only region that achieved a cumulative proportion of variance of 100%, exhibited no
missing data, and attained the best results using the RPCA method at lag 1 with a single
principal component. This result is consistent with Cotta (2014) and complements the insights
of Reisen et al. (2024), indicating the advantage of RPCA in achieving stable and efficient
dimensionality reduction.

5. Reconstruction Performance Evaluation

The evaluation of reconstruction performance was conducted by calculating the Root Mean
Square Error (RMSE) between the pre-processed data and the reconstructed data obtained
from three principal components, which were consistently applied across all methods. A model
was categorized as having good performance if the RMSE value was smaller than both the
standard deviation of the observations and the standard deviation of the reconstructed data, in
accordance with the criteria established by Liemohn et al. (2021). The summary of the number
and percentage of districts/cities based on the reconstruction performance criteria is
presented in Table 4.

Table 4. Summary of the Number and Percentage of Districts/Cities Based on Model Performance

Criteria
Method Good Model Performance Poor Model Performance
Number Percentage (%) Number Percentage (%)
Classical PCA (lag 1) 70 100 0 0
RPCA (lag 1) 70 100 0 0
PCA of MTS 70 100 0 0

Based on Table 4, when using the first three principal components, Classical PCA (lag 1),
PCA of MTS, and RPCA (lag 1) consistently achieved the best reconstruction performance across
all districts/cities. To complement this evaluation, data reconstruction was also performed
using all principal components without dimensionality reduction for the 70 districts/cities. The
results revealed that the RMSE values were extremely small, ranging from 1.91x107'* to
8.67x10™*2 for Classical PCA, 0 to 1x10™*" for RPCA, and 1.05x107*? to 1.14x10™"* for PCA of MTS.
These near-zero values indicate that the full variability of the data can be almost perfectly
reproduced when all principal components are employed. This suggests that the use of three
principal components is sufficient to accurately represent the main structure of the data across
all regions. Furthermore, the consistent reconstruction accuracy suggests that the empirical
and simulation results are in good agreement, implying that dimensionality reduction using
PCA tends to preserve the main data structure, in line with its theoretical purpose of retaining
data variability.
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6. Outlier Detection

An outlier detection assessment was conducted by applying both classical and robust
ACOVF analyses to the [(1) data after mean-centering at the optimal lag (lag 1). Consistent with
Reisen et al. (2024), the classical and robust ACF exhibited similar patterns in the absence of
additive outliers; however, the classical ACF was substantially distorted in the presence of
additive outliers, whereas the robust ACF remained stable. Padang Sidempuan City was
selected as a representative case study, as it contained no missing data and achieved a
cumulative variance proportion of 100% using the RPCA method atlag 1 with a single principal
component. Figure 3 presents a comparison of the ACOVF derived from Classical PCA and RPCA
applied to the I(1) data after mean-centering in Padang Sidempuan City.

ACOVF - Classic PCA - Padang Sidempuan City ACOVF - RPCA - Padang Sidempuan City
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Figure 3. Comparison of Classical (a) and Robust (b) ACOVF on I(1) Data After Mean-Centering
in Padang Sidempuan City

The visualization results presented in Figures 3(a) and 3(b) reveal that the classical ACOVF
in Padang Sidempuan City produces elevated autocovariance values, indicating the presence of
additive outliers. In contrast, the robust ACOVF demonstrates lower and more stable
autocovariance values, reflecting its resilience against outliers. These findings provide clear
evidence of additive outliers within the data. Conceptually, this result supports the simulation
findings, indicating that RPCA provides more stable covariance estimation under additive
outlier conditions.

7. Visualization of Principal Components

The visualization of the projection of the first two principal components (PC1 and PC2)
obtained from the three PCA approaches, namely Classical PCA (lag 1), RPCA (lag 1), and PCA
of MTS, was conducted for a representative region, namely Padang Sidempuan City, to illustrate
the temporal relationships across observation periods as well as the contribution of each
commodity to the overall data variability. For ease of visual interpretation, the eight
commodities were denoted as follows: V1 for Rice, V2 for Egg, V3 for Shallot, V4 for Garlic, V5
for Red Chili, V6 for Bird’s Eye Chili, V7 for Cooking Oil, and V8 for Sugar. The visualization of
the projection of the first two principal components for Padang Sidempuan City using the three
PCA methods is presented in Figure 4, corresponding to Classical PCA (a), RPCA (b), and PCA of
MTS (c).
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Figure 4. Visualization of the Projection of the First Two Principal Components in Padang
Sidempuan City: (a) Classical PCA (Lag 1), (b) RPCA (Lag 1), and (c) PCA of MTS

Based on Figure 4, Red Chili is identified as the commodity with a consistently dominant
contribution across all PCA approaches in Padang Sidempuan City. Conceptually, this pattern
indicates that the main sources of variability captured by Classical PCA, RPCA, and PCA of MTS
are consistent, suggesting that the empirical and simulation analyses are in agreement in
identifying dominant variables driving joint price dynamics.

8. Simulation-Based Modeling

The simulation analysis indicates that the data generation process satisfies the
assumptions of a VAR(1) model, with a stationary coefficient matrix ® and a disturbance
covariance matrix I, that is symmetric and positive definite. Based on simulations without
outliers, three categories of inter-variable correlation levels, namely low, moderate, and high,
were identified, as visualized in Figure 5.
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Figure 5. Boxplot of Mean Absolute Correlation and Mean Correlation from Simulation Results
Without Outliers for Low, Moderate, and High Correlation Categories

Based on Figure 5, the mean absolute correlation values among variables range from
0.0352 to 0.0929 for the low correlation category, 0.2896 to 0.4265 for the moderate category,
and 0.6826 to 0.7752 for the high category. Meanwhile, the mean correlation values
(accounting for the sign) vary between -0.0291 and 0.035 for the low correlation category,
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0.2896 to 0.4265 for the moderate category, and 0.6826 to 0.7752 for the high category.
Furthermore, the ADF test confirmed that all simulated datasets, both the baseline and those
containing outliers, were stationary at the 10% significance level. Conceptually, these
simulation results are consistent with the empirical findings, reinforcing the integration
between empirical analysis and simulation-based validation while successfully reflecting short-
memory dynamics and inter-variable relationships observed in the data.

9. Evaluation of PCA Methods on Simulated Data

The evaluation of PCA methods on simulated data was conducted with respect to
cumulative variance proportion, the number of principal components (PCs), and optimal lag
across various simulation scenarios. The results indicate that only under the scenario
characterized by high correlation, outliers present in all variables, large magnitude (15), and a
low proportion of outliers (1%), Classical PCA achieved the best performance, with a single
principal component explaining 90.68% of the variance at lag 2. In all other scenarios, the
method demonstrating superior performance was RPCA, as summarized in Table 5.

Table 5. Average Variance Proportion, Number of Principal Components, and Optimal Lag by RPCA

Correlation  QOutlier Condition Proportion (%) Average PC Optimal Lag
Low Without Outliers 93.46 2 1
All Variables 93.51 2 1
First Variable 93.46 2 1
Moderate Without Outliers 95.11 2 1
All Variables 94.83 2 1
First Variable 95.11 2 1
High Without Outliers 90.68 1 1
All Variables 90.01 1 1
First Variable 90.68 1 1
Overall Scenarios 92.99 1.68 1

Table 5 indicates that RPCA consistently emerges as the most efficient and effective method,
achieving an average variance proportion of 92.99%, with a relatively low average number of
principal components (1.68), an optimal lag consistently identified at lag 1, and stable
performance even in the presence of outliers. To further support this result, the autocovariance
behavior was visually examined to illustrate how outliers influence the stability of classical and
robust estimators. Visual inspection of the autocovariance behavior (Figure 3) shows that
classical ACOVF produces elevated autocovariance values due to outliers, whereas the robust
ACOVF remains more stable, consistent with the robust ACF behavior reported by Reisen et al.
(2024). The simulation results confirm that the strongest correlations occur at small lags, while
autocovariance estimation becomes less accurate at larger lags (Reisen et al., 2024), with lag 1
identified as the optimal lag. Unlike Reisen et al. (2024), who implemented a factor modeling
approach based on the summation of autocovariances, and Cotta (2014), who compared RPCA
and Classical PCA only at lag 0, this study also includes PCA of MTS within a short-memory
VAR(1) setting under three levels of inter-variable correlation. Within this structure, both
Classical PCA and RPCA were constructed from the summation of autocovariances across
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several lags, while RPCA achieved the highest efficiency and variance proportion, with Classical
PCA outperforming only under high-correlation, low-outlier conditions.

D. CONCLUSION AND SUGGESTIONS

This study synthesizes empirical and simulation-based analyses to evaluate three PCA
approaches, namely Classical PCA, RPCA, and PCA of MTS, for dimensionality reduction of
strategic food price data in Indonesia. Both Classical PCA (lag 1) and RPCA (lag 1) proved to be
efficient and effective, requiring only one to two principal components to explain at least 85%
of the total variance. At the optimal lag (lag 1), RPCA demonstrated the most stable and
consistent performance, particularly in the presence of outliers, whereas Classical PCA (lag 2)
was superior only in scenarios with high inter-variable correlation and a low proportion of
outliers. On average, RPCA achieved 92.99% of explained variance with a relatively small
number of components (1.68). Scientifically, these findings emphasize that robust covariance
estimation plays an essential role and is indicated to enhance dimensionality-reduction
accuracy while maintaining the stability of multivariate analysis under imperfect data
conditions. Practically, the application of RPCA is indicated to improve the accuracy of price
monitoring and policy evaluation in the food sector. Future research is encouraged to develop
high-dimensional or long-memory robust models to strengthen the resilience and flexibility of
analysis when dealing with more complex data characteristics.
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