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However, limited studies have applied multivariate geostatistical approaches,
particularly Co-Kriging (CK), to assess microbial contamination in tropical urban
river systems, where pollution patterns are highly variable and data gaps are
frequent. This study employs CK, a multivariate geostatistical interpolation
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Co-Kriging; technique, to estimate Total Coliform Bacteria concentrations in the rivers of DKI
Spatial Interpolation; Jakarta, Indonesia. Total Coliform Bacteria served as the primary variable, with
Total Coliform Bacteria. Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)

incorporated as secondary variables. A total of 120 sampling points were analyzed,
with data collected by Dinas Lingkungan Hidup DKI Jakarta during the second
monitoring period in June 2022. Semivariogram modelling identified the Gaussian
model as the best fit, yielding the lowest root mean square error (RMSE) of 11.468,
which performed better than both the Spherical and Exponential models. Model
performance was further evaluated through Leave-One-Out Cross-Validation
(LOOCYV), in which one data point was systematically removed and re-estimated in
multiple iterations to calculate the residuals and assess model accuracy. The CK
analysis was performed using RStudio software. CK predictions closely matched
observed concentrations, demonstrating strong model performance. At unsampled
locations, the estimated mean Total Coliform Bacteria concentration was 7.711 x
10° MPN/100 ml with a standard deviation of 4.406 x 10° MPN/100 ml. The high
variance indicates substantial spatial heterogeneity, likely driven by data outliers,
weak spatial autocorrelation in COD, and low correlations between Total Coliform-
COD and BOD-COD pairs. These findings highlight the potential of geostatistical CK
to provide reliable spatial predictions of microbial contamination in urban river
systems, thereby supporting evidence-based water quality monitoring and
management in densely populated regions. The insights generated in this study can
help environmental authorities in DKI Jakarta optimize monitoring strategies,
prioritize pollution hotspot interventions, and strengthen urban river health
management to protect public health and guide sustainable urban water

governance.
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A. INTRODUCTION

Spatial statistics is a branch of statistics that analyzes data with geographic locations,
helping to identify spatial patterns and relationships. Geostatistics, a subfield of spatial
statistics, is particularly useful for estimating values at locations where data are missing. One
of the main challenges in spatial analysis is incomplete or sparse data, which can reduce
estimation accuracy. To address this, spatial interpolation methods are used, which predict
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values at unsampled locations based on nearby sampled data (Conolly, 2020). This technique
encompasses non-geostatistical methods, such as Inverse Distance Weighted (IDW), and
geostatistical methods, such as Kriging. Compared to IDW method, Kriging provides higher
accuracy due to its interpolation weight accounting not only for the distance between
observation and estimation point but also for the spatial correlation among these points. The
studies conducted by Singh & Verma (2019), Usowicz et al. (2021), Dewana et al. (2022)
indicate that Kriging provides more accurate estimations, yielding lower Root Mean Square
Error (RMSE) values compared to IDW.

Among interpolation methods, Kriging is widely used because it accounts for both the
distance between points and their spatial correlation. Ordinary Kriging (OK) estimates a single
variable assuming a constant mean across the study area. However, OK is limited when multiple
correlated variables are available. Co-Kriging (CK) improves estimation accuracy by
incorporating one or more secondary variables that are correlated with the target variable,
allowing better predictions in areas with sparse data (Belkhiri et al., 2020; Bogunovic et al,,
2021; Rostami et al., 2020).

In DKI Jakarta, water quality monitoring data show that approximately 70% of rivers are
heavily polluted, with an average Total Coliform concentrations of 2.46 x 10’ MPN/100 mL
according to Dinas Lingkungan Hidup DKI Jakarta, indicating serious public health risks. While
previous studies in Jakarta and other urban river systems have primarily focused on descriptive
water quality monitoring, they have not applied Co-Kriging to estimate microbial
contamination, compared different semivariogram models, or incorporated correlated water
quality variables such as BOD and COD to enhance spatial prediction accuracy (Djembarmanah
& Salsabila, 2024; Pratama et al., 2020). Therefore, the novelty of this study lies in applying Co-
Kriging to model Total Coliform Bacteria in a tropical urban river system while integrating BOD
and COD as secondary variables due to their influence on microbial growth and their
practicality for routine monitoring.

Total Coliform Bacteria is chosen as the primary indicator of water quality because it
reflects microbial contamination and potential health risks from fecal pollution(Rusdiyanto et
al, 2021). The presence of these bacteria indicates the possible presence of pathogenic
microorganisms that can cause illnesses such as gastrointestinal infections (diarrhea, nausea,
vomiting), urinary tract infections, and skin and eye infections. These risks are particularly
higher for vulnerable groups, including children, the elderly, and individuals with weakened
immune systems.

For the purpose of this study, water quality monitoring data were collected from 120
sampled points spread across the main rivers of DKI Jakarta. Nevertheless, several locations
remain unsampled in the monitoring process, necessitating detailed spatial estimation.
Therefore, this study aims to identify the best semivariogram model for estimating the spatial
distribution of Total Coliform Bacteria and to estimate the Total Coliform Bacteria
concentrations at unsampled river locations in DKI Jakarta in 2022 using the Co-Kriging
method with BOD and COD as secondary variables, in order to produce more accurate and
detailed spatial estimates to support optimal river water quality management.
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B. METHODS

This study employs secondary data on river water quality in DKI Jakarta Province for the
year 2022, obtained from Dinas Lingkungan Hidup DKI Jakarta through the Satu Data Jakarta
portal. The dataset includes 120 sampled points and 12 unsampled points, with variables of
Total Coliform Bacteria (MPN/100 ml), Biochemical Oxygen Demand (BOD) (mg/L), and
Chemical Oxygen Demand (COD) (mg/L). The data were collected by Dinas Lingkungan Hidup
DKI Jakarta during the second monitoring period in June 2022. The spatial extent of the study
covers the entire Jakarta region, excluding the Thousand Islands (Kepulauan Seribu). The
research stages are illustrated in the flowchart shown in Figure 1.
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Figure 1. Research Flow Chart
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1. Stationarity

Spatial dataset is considered stationary when it exhibits a random pattern without any
discernible trend (Sikder & Ziifle, 2020). The examination of stationary can be performed by
plotting the data values against their spatial coordinates.

2. Isotropic and Anisotropic

A semivariogram that models the distance function while considering direction is called an
anisotropic semivariogram, whereas a semivariogram that models distance without
considering direction is called an isotropic semivariogram (Abbasnejadfard et al., 2021). If
anisotropy is present in the data, distances between points are calculated by taking the main
spatial direction into account. Conversely, if the data are isotropic, distances are calculated
simply based on the coordinates of each point.

3. Experimental Semivariogram

The experimental semivariogram is calculated from the measurement data and plotted as
a function of separation distance (Schiappapietra et al., 2022; Usowicz et al., 2021). It quantifies
how the similarity between data points changes with distance and serves as the basis for fitting
a theoretical semivariogram model for subsequent spatial interpolation.

4. Theoretical Semivariogram

There are several types of theoretical semivariogram models, including the spherical,
exponential, and Gaussian models (Ding et al., 2018). These models are used to fit the
experimental semivariogram and describe how spatial correlation changes with distance. Key
parameters include the nugget effect (Co), representing variability at very short distances; the
partial sill (C), reflecting the increase in variance due to spatial correlation; and the range (A),
which is the distance at which spatial autocorrelation becomes negligible.

5. Cross-Semivariogram

The cross-semivariogram is used to quantify the spatial relationship between two variables
(Addis et al,, 2023; Payares-garcia et al., 2023). [t measures how the values of one variable co-
vary with another variable over space, helping to improve the accuracy of multivariate spatial
interpolation like Co-Kriging.

6. Cross-validation

Cross-validation was conducted to evaluate the performance of the candidate models(Lei,
2020). Specifically, Leave-One-Out Cross-Validation (LOOCV) was applied, where one data
point is sequentially removed from the dataset and the model is recalibrated to predict that
point (Liu et al, 2025). The removed data point is then estimated using the theoretical
semivariogram model in the Co-Kriging method. This process is repeated for all data points,
producing residuals derived from the differences between the estimated and observed values.
The accuracy of each model was assessed using the Root Mean Square Error (RMSE), with lower
RMSE values indicating better predictive performance (Pham et al,, 2019).
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7. Co-Kriging (CK)

Co-Kriging is a variant of Kriging that utilizes more than one correlated variable to enhance
prediction accuracy (Xiao et al., 2018). The linear relationship for the estimated value at an
unsampled points Z(s,) in CK can be expressed in Equation (1) as follows (Dowd & Pardo-
igazquiza, 2024).

n

(26) = Ziaﬂz (s) ()

i=1j=1

where Z;(s;) is the variable used at the i-th location, while 4;; represents the weight for the
variable used at the i-th location. The weights can be calculated using Equation (2) as follows.

2:(50) = €3 (5o) (2)

where C;! is the inverse of the combined semivariance matrix and c, (s,) represents the
semivariance vector for all variables at all locations with respect to s, (the unsampled location).
Then, Equation (3) presents the minimum variance estimator in CK.

n k
0%(50) = ¥11(S0, o) — Z Z Ai V1) (S0, Si) + My (3)

i=1 j=1

C. RESULT AND DISCUSSION
1. Descriptive Statistics

This study utilized river water quality data from the Special Capital Region (DKI) of Jakarta
in 2022. Figure 2 presents the distribution of the variables used in this study, namely Total
Coliform Bacteria (Z;), Biochemical Oxygen Demand (BOD, Z,), and Chemical Oxygen Demand
(COD, Z3).
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Figure 2. Distribution of Total Coliform Bacteria (Z;), Biochemical Oxygen Demand (Z;),
and Chemical Oxygen Demand (Z3)
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Figure 2 shows that each variable contains several extreme values (outliers), with
Z1 having 23 outliers, Z,having 13 outliers, and Z; having 8 outliers. These extreme values may
result from multiple interacting factors, including: (1) localized point-source pollution, where
specific river reaches receive concentrated domestic or industrial effluents; (2) spatial
heterogeneity in river geomorphology and hydrodynamics, such as low-velocity zones, high
sediment deposition, or stagnant sections that facilitate bacterial accumulation; (3) variation in
anthropogenic pressures, particularly in densely populated and industrial corridors that
exhibit pronounced temporal and spatial fluctuations in water quality; and (4) natural
environmental drivers, including intense rainfall events, tidal influence, and surface runoff,
which can abruptly elevate microbial and organic contamination levels(Bojarczuk et al., 2018).

These outliers are not removed, as Co-Kriging utilizes the full variability of the data to
produce more accurate spatial estimates, including in areas with high pollution levels.
Removing or treating these outliers would result in the loss of information and alter the
characteristics of the data. The descriptive statistics of Total Coliform Bacteria ( Z; ),
Biochemical Oxygen Demand (Z;), and Chemical Oxygen Demand (Z3) from 120 sampling
points are presented in Table 1 below.

Table 1. Descriptive Statistics of the Variables
Variable Mean Variance Standard Deviation Minimum Maximum

Z1* 10.560 264.385 16.260 0.005 50.000
72 12.834 93.005 9.644 1.330 51.130
73 57.510 3656.041 60.465 4.30 441.000

*expressed in millions

Table 1 shows that the average value of Z; is 10.56 x 10° MPN/100 ml, indicating a high
level of microbiological pollution since many rivers have exceeded the water quality standard
set by Dinas Lingkungan Hidup DKI Jakarta (DLH) of 5,000 MPN/100 ml. The maximum value
of 50 x 10° MPN/100 ml was found in the Sunter, Buaran, Patukangan, Cideng, and Kalibaru
Timur rivers, all of which are located in densely populated downstream areas, while the
minimum value of 0.005 x 10° MPN/100 ml was observed in the Tarum Barat and Angke rivers.
The high variance (264.385 x 10° MPN/100 ml) and standard deviation (16.260 x 10°
MPN/100 ml) indicate large variations across sampling points, likely influenced by differences
in population density, river location (upstream or downstream), sanitation infrastructure, and
domestic waste management, for Z,, the mean is 12.834 mg/L, far above the DLH standard of 3
mg/L, with the highest value (51.130 mg/L) in the Mampang River, which is surrounded by
dense settlements, traditional markets, and food stalls, while the lowest value (1.330 mg/L)
occurs in the Tarum Barat River, which is not directly used as a domestic wastewater channel.
The high variance (93.005) and standard deviation (9.644) suggest that organic pollution levels
vary considerably among rivers. Meanwhile, Z; shows an average of 57.51 mg/L, also
exceeding the DLH standard of 25 mg/L, with a maximum 0f 441.000 mg/L found in the Buaran
River again located in a densely populated downstream area and the lowest value in the Tarum
Barat River. The large variance (3,656.041) and standard deviation (60.465) further confirm
the substantial variability of chemical pollution levels across sampling locations.
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2. Stationarity Assumption

The Co-Kriging interpolation method assumes that the dataset used must be stationary,
meaning that its statistical properties (such as mean and variance) do not vary systematically
across space. To verify this assumption, spatial distribution plots were generated for Total
Coliform Bacteria, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD),
as shown Figure 3.
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Figure 3. Plots of (a) Total Coliform Bacteria, (b) BOD, and (c¢) COD

As illustrated in Figure 3, the spatial distribution of colours for the three parameters
appears randomly scattered, with no visible systematic gradients or directional trends. This
randomness indicates that the variables exhibit relatively constant statistical behaviour across
the study area. Therefore, the data for Total Coliform Bacteria, BOD, and COD can be considered
stationary, satisfying the fundamental assumption required for the Co-Kriging interpolation
process.

In this stage of the research, data exploration and validation of statistical assumptions were
carried out to ensure the reliability of the spatial modelling process. By confirming that the
datasets meet the stationarity requirement, the analysis can proceed confidently to the
variogram modelling and Co-Kriging interpolation stages. The results obtained in this section
form an essential foundation for accurate and unbiased spatial prediction of river water quality
parameters across the study area.

3. Examination of Anisotropic Semivariogram

The anisotropic semivariogram analysis is conducted to assess directional dependence in
the spatial variability of the examined variables. Anisotropy can be evaluated through the
variogram map (Vmap) as well as by comparing the sill, range, and nugget values of each
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variable across different directions. The results are summarized in Table 2 and illustrated in

Figure 4.
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Figure 4. Vmap Z,, Z, dan Z;

Figure 4 shows that no dominant direction is evident in Z;, Z,, or Z3. The relatively uniform
spatial continuity suggests that the data exhibit isotropy rather than anisotropy.

Table 2. Directional Semivariogram
7, Z, Zs
Spherical
0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135°
Range 1169 1169 1169 1169 4752 4752 4752 4752 1499 1499 1499 1499
Sill 303 303 303 303 107 107 107 107 3992 3992 3992 3992
Nugget 155 155 155 155 39 39 39 39 1051 1051 1051 1051

Exponential

0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135°
Range 11359 11359 11359 11359 1941 1941 1941 1941 315 315 315 315
Sill 397 397 397 397 108 108 108 108 4157 4157 4157 4157
Nugget 242 242 242 242 46 46 46 46 0 0 0 0

Gaussian

0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135°
Range 5523 5523 5523 5523 1626 1626 1626 1626 531 531 531 531
Sill 308 308 308 308 107 107 107 107 4755 4755 4755 4755

Nugget 141 141 141 141 36 36 36 36 2317 2317 2317 2317

Table 2 shows that the variables Z;, Z,, and Z; have identical sill, range, and nugget values
across all directions. This indicates that the data are isotropic. Therefore, Co-Kriging
interpolation can be performed by modeling only the distance function without considering
directional effects.

4. Experimental Semivariogram and Cross-Semivariogram

In the Co-Kriging interpolation method, the initial step prior to performing the interpolation
is the construction of experimental semivariograms and cross-semivariograms for all variables.
Figure 5 presents the experimental semivariogram and cross-semivariogram plots.
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Figure 5. Experimental Semivariogram and Cross-Semivariogram Plots

Figure 5 presents the semivariogram and cross-variogram for three spatial variables (Z;,
Z,, and Z3), which are utilized in geostatistical analysis, particularly in the Co-Kriging method.
The X-axis represents the distance between points (lag distance), while the Y-axis indicates the
semivariance values that describe the degree of data variation across locations. After obtaining
the experimental semivariogram and cross-semivariogram, the next step is to fit them with the
theoretical semivariogram and cross-semivariogram models.

5. Theoretical Semivariogram and Cross-Semivariogram

The experimental semivariograms and cross-semivariograms were fitted to theoretical
models to identify the best representation of spatial dependence. In this study, the spherical,
exponential, and gaussian models were evaluated as candidate theoretical semivariogram
models.
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Figure 6.

Spherical, Exponential, and Gaussian Semivariogram and Cross-Semivariogram Models
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Based on the theoretical semivariogram and cross-semivariogram plots in Figure 6, the
parameter estimates of the nugget effect (Co), sill (Co + C), and range (A) were derived. These
estimates are summarized in Table 3.

Table 3. Theoretical Semivariogram and Cross-Semivariogram Models

Model Variable Nugget effect Sill Range Nugget To Sill Ratio
(Co) (Co+(C) A) (CO/(CO+C)%
Spherical A 158.238 303.813 11893.150 52%
Z, 74.995 114.855 11893.150 65%
Zs 3607.696 4121.720 11893.150 87%
ARYA 57.895 76.371 11893.150 76%
Zy * 7 393.003 444.245 11893.150 88%
ZyxZs 445.225 585.440 11893.150 76%
Exponential Zy 165.808 400.623 7993.272 41%
Z, 95.056 99.680 7993.272 95%
Zs 3900.475 4029.298 7993.272 97%
Zyx 7, 50.060 82.577 7993.272 61%
ZyxZs 300.467 473.933 7993.272 63%
Zy % Zq 518.199 542.274 7993.272 96%
Gaussian Zy 165.542 325.053 5457.888 51%
Z, 87.993 116.691 5457.888 75%
Zs 4007.563 4076.177 5457.888 98%
Zyx 7, 56.498 91.335 5457.888 62%
ARA 343.847 446.306 5457.888 77%
Zy % Zs 505.236 535.299 5457.888 94%

Spatial autocorrelation based on the Nugget To Sill Ratio can be classified into three
categories: strong (< 25%), moderate (25%-75%), and weak (> 75%)(Sharma & Sood, 2022).
Table 3 indicates that under the spherical model, the primary variable Z; and the secondary
variable Z, exhibit moderate spatial autocorrelation, whereas Z; shows weak spatial
autocorrelation. The semivariogram plot of the Z; and Z, pair demonstrates an increasing and
stabilizing pattern, suggesting strong spatial correlation between these two variables. In
contrast, the Z; and Z; pair displays a relatively flat pattern, indicating weak or even absent
spatial correlation. Meanwhile, the Z, and Z; pair shows an increasing and stabilizing trend,
which implies strong spatial correlation.

The exponential model, the results reveal that Z; demonstrates moderate spatial
autocorrelation, while both Z, and Z; exhibit weak autocorrelation. Nevertheless, the
semivariogram of the Z; and Z, pair again shows a rising and stabilizing pattern, suggesting
strong spatial correlation. The Z; and Z; pair also indicates the presence of spatial correlation,
although not as strong as that of the Z; and Z, pair. In contrast, the Z, and Z; pair presents a
relatively flat pattern, reflecting weak or negligible correlation.

Under the Gaussian model, both Z; and Z, display moderate spatial autocorrelation,
whereas Z; continues to show weak autocorrelation. Similar to the spherical and exponential
models, the Z; and Z, pair maintains an increasing and stabilizing trend, indicating strong
spatial correlation. The Z; and Z; pair also suggests the existence of spatial correlation, albeit
weaker than that observed between Z; and Z,. Conversely, the Z, and Z; pair reveals a flat
pattern, indicating weak or absent spatial correlation.
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Subsequently, after fitting the experimental semivariogram and cross-semivariogram with
their theoretical models, the next step is to select the most suitable model among the three
theoretical semivariogram models (spherical, exponential, and Gaussian) for estimating the
Total Coliform Bacteria using Co-Kriging (CK) interpolation. The selection of the best-fitting
model is carried out through cross-validation using the Leave-One-Out Cross-Validation
(LOOCV) approach.

6. Cross-Validation

The selection of the best-fitting theoretical semivariogram and cross-semivariogram model
was carried out through cross-validation using the Leave-One-Out Cross-Validation (LOOCV)
method. The evaluation criterion was based on the Root Mean Square Error (RMSE) for each

model, with the model yielding the lowest RMSE considered the most optimal, as shown in
Table 4.

Table 4. Root Mean Square Error (RMSE) Values for Each Model

Model RMSE
Spherical 11.543
Exsponential 11.549
Gaussian 11.468

Based on Table 4, the Gaussian model produced the lowest RMSE value of 11.468 compared
to the Spherical and Exponential models. Therefore, it can be concluded that the Gaussian
model is the most suitable theoretical semivariogram for estimating Total Coliform Bacteria in
DKI Jakarta in 2022 using Co-Kriging interpolation.

7. Unsampled Point Interpolation Using Co-Kriging

After identifying the best-fitting theoretical semivariogram model, the next step is to
estimate Total Coliform Bacteria concentrations at unsampled locations in the rivers of DKI
Jakarta for 2022 using the Co-Kriging method with the Gaussian theoretical semivariogram
model. Figure 7 below shows the spatial distribution map of the estimated values for both
unsampled and sampled locations in the rivers of DKI Jakarta in 2022. Sampled locations are
represented by circles, while unsampled locations are indicated by triangles.
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Figure 7. Co-Kriging Interpolation of Total Coliform Bacteria

Table 5 below presents the descriptive statistics of the estimated Total Coliform Bacteria
at unsampled locations in DKI Jakarta in 2022.

Table 5. Descriptive Statistics of Estimated Total Coliform Bacteria at Unsampled Locations

Mean Variance Std. Deviation Min Max
7.711* 19.409* 4.406* 2.382* 14.965*
* expressed in millions

Based on Table 5, the mean estimated value of Total Coliform Bacteria at unsampled
locations is 7.711 x 10® MPN/100ml. This is lower than the mean value observed at sampled
points, which is 10.560 x 106 MPN/100ml. The variance and standard deviation of the
estimates at unsampled locations are also smaller than those at sampled points, being
19.409 x 10° MPN/100ml and 4.406x 10° MPN/100ml, respectively. Furthermore, the range
between the maximum and minimum estimated values is narrower compared to the sampled
points, spanning from 2.382 x 10° 106 MPN/100ml to 14.965 x 10°® MPN/100ml. The
lowest estimated Total Coliform Bacteria concentration was observed in the upper reach of the
Ciliwung River at geographic coordinates (106.838; -6.343), which corresponds to areas with
relatively higher elevation, better flow velocity, and lower population density. These conditions
typically promote better dilution and self-purification processes, resulting in reduced bacterial
concentrations. In contrast, the highest concentration was found in another section of the
Ciliwung River at coordinates (106.817; -6.147), which lies within the downstream area of
Jakarta. This segment is characterized by dense residential settlements, industrial activities,
and frequent domestic wastewater discharge directly into the river. The limited water
circulation and accumulation of organic materials in this area further enhance microbial
proliferation.

These spatial differences highlight the significant influence of both anthropogenic and
natural factors on bacterial distribution within the Ciliwung River. Upstream regions tend to
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exhibit better water quality due to reduced human pressure and faster flow, whereas
downstream sections suffer from pollutant accumulation, leading to high Total Coliform levels
and increased health and environmental risks. This observation is consistent with the spatial
distribution map of the estimates presented in Figure 7, where the estimated values closely
match those of neighbouring locations. The variance of the estimates is relatively high,
indicating that the Total Coliform Bacteria counts vary considerably across different river
points. In this study, the high variance may be attributed to the presence of outliers in the
dataset and the inclusion of a secondary variable, Chemical Oxygen Demand (COD), which
exhibits weak spatial autocorrelation. Additionally, the correlation between Total Coliform
Bacteria and COD is also weak.

These spatial prediction results underscore the severe microbial pollution affecting river
systems in DKI Jakarta, particularly the Ciliwung River, which flows through highly populated
areas, informal settlements, and neighborhoods with limited domestic wastewater treatment
infrastructure. The pronounced Total Coliform hotspots observed in downstream sections of
the Ciliwung reflect cumulative pollutant loads originating upstream and the reduced natural
purification capacity as the river enters denser urban cores. This condition aligns with findings
by Pamurda et al. (2023), who reported that population density and poor sanitation
infrastructure significantly influence water quality deterioration along the Ciliwung River,
especially in Jakarta’s urbanized regions. Similarly, Priyono et al. (2021) observed that the
water quality in the Bogor segment of the Ciliwung River declines due to increased domestic
waste input and runoff from surrounding residential areas, further supporting the observed
spatial patterns of Total Coliform distribution.

The smoother Co-Kriging estimates at unsampled locations indicate stable spatial trends
shaped by hydrological connectivity and the continuous downstream transport of fecal
contaminants. Environmentally, these findings highlight the vulnerability of the Ciliwung River
as a critical urban water corridor and underscore significant public health risks for
communities residing along its banks or engaging in informal water contact activities.
Accordingly, this study provides scientific support for prioritizing sanitation improvements,
strengthening wastewater management infrastructure, and implementing targeted monitoring
interventions along key reaches of the Ciliwung to mitigate microbial exposure and promote
sustainable urban river management in Jakarta.

D. CONCLUSION AND SUGGESTIONS

This study demonstrates the capability of Co-Kriging to predict the spatial distribution of
Total Coliform Bacteria in the rivers of DKI Jakarta by incorporating BOD and COD as secondary
variables. The approach effectively identified microbial contamination hotspots, particularly in
densely populated downstream areas, highlighting the influence of anthropogenic activities on
urban river water quality.

Despite its promising performance, the study acknowledges limitations related to extreme
outliers, weak correlations with some auxiliary variables, and the use of a single-year dataset,
which may constrain temporal interpretation. Future research should explore robust or hybrid
Co-Kriging approaches, integrate additional water quality indicators with stronger spatial
relationships, and apply multi-year datasets to capture temporal dynamics.
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The novelty of this work lies in applying a multivariate Co-Kriging framework with BOD and
COD as auxiliary predictors and systematically evaluating semivariogram models to improve
predictive reliability. This study advances geostatistical applications for microbial water
quality assessment in developing megacities and provides practical insights for supporting
targeted monitoring and data-driven river management in urban tropical environments.

REFERENCES

Abbasnejadfard, M., Bastami, M., & Fallah, A. (2021). Investigating the spatial correlations in univariate
random fields of peak ground velocity and peak ground displacement considering anisotropy.
Geoenvironmental Disasters, 8(1), 24. https://doi.org/10.1186/s40677-021-00196-w

Addis, H. K., Ayalew, B., Gebretsadik, M., Abera, A., Getu, L. A., & Addis, A. K. (2023). Cross-Correlation of
Soil Moisture and Stone Content and Their Spatial Pattern Across the Different Slope Aspects
and Soil Depth. Turkish Journal of Agriculture - Food Science and Technology, 11(4), 625-633.
https://doi.org/10.24925 /turjaf.v11i4.625-633.5279

Belkhiri, L., Tiri, A., & Mouni, L. (2020). Spatial distribution of the groundwater quality using kriging and
Co-kriging interpolations. Groundwater for Sustainable Development, 11(August), 100473.
https://doi.org/10.1016/j.gsd.2020.100473

Bogunovic, L., Filipovic, L., Filipovic, V., & Pereira, P. (2021). Spatial mapping of soil chemical properties
using multivariate geostatistics. A study from cropland in eastern croatia. Journal of Central
European Agriculture, 22(1), 201-210. https://doi.org/10.5513 /JCEA01/22.1.3011

Bojarczuk, A., Jelonkiewicz, L., & Lenart-Boron, A. (2018). The effect of anthropogenic and natural factors
on the prevalence of physicochemical parameters of water and bacterial water quality indicators
along the river Biatka, southern Poland. Environmental Science and Pollution Research, 25(10),
10102-10114. https://link.springer.com/article/10.1007/s11356-018-1212-2

Conolly, J. (2020). Spatial Interpolation. Archaeological Spatial Analysis, 118-134.
https://doi.org/10.4324/9781351243858-7

Dewana, B. R, Prasetyo, S. Y. ].,, & Hartomo, K. D. (2022). Comparison of IDW and Kriging Interpolation
Methods Using Geoelectric Data to Determine the Depth of the Aquifer in Semarang, Indonesia.
Jurnal Ilmiah Teknik Elektro Komputer  Dan Informatika, 8(2), 215.
https://doi.org/10.26555 /jiteki.v8i2.23260

Ding, Q., Wang, Y., & Zhuang, D. (2018). Comparison of the common spatial interpolation methods used
to analyze potentially toxic elements surrounding mining regions. Journal of Environmental
Management, 212, 23-31. https://doi.org/10.1016/j.jenvman.2018.01.074

Djembarmanabh, R. S., & Salsabila, G. Analysis of the Water Quality of the River in West Java as the Raw
Water for Drinking Water. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik
Lingkungan, 21(3), 802-811. https://doi.org/10.14710/presipitasi.v21i3.802-811

Dowd, P. A, & Pardo-igizquiza, E. (2024). The Many Forms of Co-kriging : A Diversity of Multivariate
Spatial Estimators. Mathematical Geosciences, 56(2), 387-413.
https://doi.org/10.1007/s11004-023-10104-7

Lei, ]J. (2020). Cross-Validation With Confidence. Journal of the American Statistical Association, 115(532),
1978-1997. https://doi.org/10.1080/01621459.2019.1672556

Liu, Z,, Van Niekerk, J., & Rue, H. (2025). Leave-group-out cross-validation for latent gaussian models.
Sort, 49(1), 121-146. https://doi.org/10.57645/20.8080.02.25

Pamurda, A., Mahendra, D., Pratama, M. A., Moersidik, S. S., Rahmawati, S., & Iresha, F. M. (2023). Spatial
dynamics of microplastic pollution in water and sediments of the Ciliwung river along with
conditions of water Quality field parameters and population density. Journal of Ecological
Engineering, 24(8). 296-309. http://dx.doi.org/10.12911/22998993/166311

Payares-garcia, D., Osei, F., Mateu, ]., & Stein, A. (2023). A Poisson cokriging method for bivariate count
data. Spatial Statistics, 57, 100769. https://doi.org/10.1016/j.spasta.2023.100769

Pham, T. G., Kappas, M., Huynh, C. Van, Hoang, L., & Nguyen, K. (2019). Application of ordinary kriging
and regression kriging method for soil properties mapping in hilly region of central
Vietnam. ISPRS International Journal of Geo-Information, 8(3), 147.



Salwa Salsabila, Geostatistical Co-Kriging Approach for Estimating... 1399

https://doi.org/10.3390/ijgi8030147

Pratama, M. A,, Immanuel, Y. D., & Marthanty, D. R. (2020). A multivariate and spatiotemporal analysis
of water quality in Code River, Indonesia. The Scientific World Journal, 2020(1),
8897029.https://doi.org/10.1155/2020/8897029

Priyono, A., Rushayati, S. B., & Sujati, A. B. (2021). Water Quality Characteristic of Ciliwung River at Bogor
Botanical Garden Segmen, Bogor. Media Konservasi, 22(2), 111-117.
https://doi.org/10.11648/j.ijees.20210605.12

Rostami, A. A, Karimi, V., Khatibi, R., & Pradhan, B. (2020). An investigation into seasonal variations of
groundwater nitrate by spatial modelling strategies at two levels by kriging and co-kriging
models. Journal of Environmental Management, 270(June).
https://doi.org/10.1016/j.jenvman.2020.110843

Rusdiyanto, E., Sitorus, S. R, Noorachmat, B. P., & Sobandi, R. (2021). Assessment of the actual status of
the Cikapundung river Waters in the Densely-Inhabited Slum area, Bandung City. Journal of
Ecological Engineering, 22(11), 198-208. https://doi.org/10.12911/22998993/142916

Schiappapietra, E., Stripajova, S., Pazak, P., Douglas, |., & Trendafiloski, G. (2022). Exploring the impact
of spatial correlations of earthquake ground motions in the catastrophe modelling process: a
case study for [Italy. Bulletin of Earthquake Engineering, 20(11), 5747-5773.
https://doi.org/10.1007/s10518-022-01413-z

Sharma, R, & Sood, K. (2022). Characterization of Spatial Variability of Soil Parameters in Apple
Orchards of Characterization of Spatial Variability of Soil Parameters in Apple Orchards of
Himalayan Region Using Geostatistical Analysis. Communications in Soil Science and Plant
Analysis, 51(8), 1065-1077. https://doi.org/10.1080/00103624.2020.1744637

Sikder, A., & Ziifle, A. (2020). Augmenting geostatistics with matrix factorization: a case study for house
price  estimation.ISPRS  International  Journal of  Geo-Information, 9(5), 288.
https://doi.org/10.3390/ijgi9050288

Singh, P., & Verma, P. (2019). A comparative study of spatial interpolation technique (IDW and Kriging)
for determining groundwater quality. GIS and Geostatistical Techniques for Groundwater Science,
43-56. https://doi.org/10.1016/B978-0-12-815413-7.00005-5

Usowicz, B., Lipiec, ., kukowski, M., & Stominski, ]. (2021). Improvement of spatial interpolation of
precipitation distribution using cokriging incorporating rain-gauge and satellite (SMOS) soil
moisture data. Remote Sensing, 13(5). https://doi.org/10.3390/rs13051039

Xiao, M., Zhang, G., Breitkopf, P., Villon, P., & Zhang, W. (2018). Extended Co-Kriging interpolation
method based on multi-fidelity data. Applied Mathematics and Computation, 323, 120-131.
https://doi.org/10.1016/j.amc.2017.10.055



