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 Spatial statistics and geostatistics are essential for analyzing spatially distributed 
data, particularly in environmental studies where data gaps are prevalent. 
However, limited studies have applied multivariate geostatistical approaches, 
particularly Co-Kriging (CK), to assess microbial contamination in tropical urban 
river systems, where pollution patterns are highly variable and data gaps are 
frequent. This study employs CK, a multivariate geostatistical interpolation 
technique, to estimate Total Coliform Bacteria concentrations in the rivers of DKI 
Jakarta, Indonesia. Total Coliform Bacteria served as the primary variable, with 
Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) 
incorporated as secondary variables. A total of 120 sampling points were analyzed, 
with data collected by Dinas Lingkungan Hidup DKI Jakarta during the second 
monitoring period in June 2022. Semivariogram modelling identified the Gaussian 
model as the best fit, yielding the lowest root mean square error (RMSE) of 11.468, 
which performed better than both the Spherical and Exponential models. Model 
performance was further evaluated through Leave-One-Out Cross-Validation 
(LOOCV), in which one data point was systematically removed and re-estimated in 
multiple iterations to calculate the residuals and assess model accuracy. The CK 
analysis was performed using RStudio software. CK predictions closely matched 
observed concentrations, demonstrating strong model performance. At unsampled 
locations, the estimated mean Total Coliform Bacteria concentration was 7.711 × 
10⁶ MPN/100 ml with a standard deviation of 4.406 × 10⁶ MPN/100 ml. The high 
variance indicates substantial spatial heterogeneity, likely driven by data outliers, 
weak spatial autocorrelation in COD, and low correlations between Total Coliform–
COD and BOD–COD pairs. These findings highlight the potential of geostatistical CK 
to provide reliable spatial predictions of microbial contamination in urban river 
systems, thereby supporting evidence-based water quality monitoring and 
management in densely populated regions. The insights generated in this study can 
help environmental authorities in DKI Jakarta optimize monitoring strategies, 
prioritize pollution hotspot interventions, and strengthen urban river health 
management to protect public health and guide sustainable urban water 
governance. 
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A. INTRODUCTION  

Spatial statistics is a branch of statistics that analyzes data with geographic locations, 

helping to identify spatial patterns and relationships. Geostatistics, a subfield of spatial 

statistics, is particularly useful for estimating values at locations where data are missing. One 

of the main challenges in spatial analysis is incomplete or sparse data, which can reduce 

estimation accuracy. To address this, spatial interpolation methods are used, which predict 
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values at unsampled locations based on nearby sampled data (Conolly, 2020). This technique 

encompasses non-geostatistical methods, such as Inverse Distance Weighted (IDW), and 

geostatistical methods, such as Kriging. Compared to IDW method, Kriging provides higher 

accuracy due to its interpolation weight accounting not only for the distance between 

observation and estimation point but also for the spatial correlation among these points. The 

studies conducted by Singh & Verma (2019), Usowicz et al. (2021), Dewana et al. (2022) 

indicate that Kriging provides more accurate estimations, yielding lower Root Mean Square 

Error (RMSE) values compared to IDW.  

Among interpolation methods, Kriging is widely used because it accounts for both the 

distance between points and their spatial correlation. Ordinary Kriging (OK) estimates a single 

variable assuming a constant mean across the study area. However, OK is limited when multiple 

correlated variables are available. Co-Kriging (CK) improves estimation accuracy by 

incorporating one or more secondary variables that are correlated with the target variable, 

allowing better predictions in areas with sparse data (Belkhiri et al., 2020; Bogunovic et al., 

2021; Rostami et al., 2020). 

In DKI Jakarta, water quality monitoring data show that approximately 70% of rivers are 

heavily polluted, with an average Total Coliform concentrations of 2.46 × 10⁷ MPN/100 mL 

according to Dinas Lingkungan Hidup DKI Jakarta, indicating serious public health risks. While 

previous studies in Jakarta and other urban river systems have primarily focused on descriptive 

water quality monitoring, they have not applied Co-Kriging to estimate microbial 

contamination, compared different semivariogram models, or incorporated correlated water 

quality variables such as BOD and COD to enhance spatial prediction accuracy (Djembarmanah 

& Salsabila, 2024; Pratama et al., 2020). Therefore, the novelty of this study lies in applying Co-

Kriging to model Total Coliform Bacteria in a tropical urban river system while integrating BOD 

and COD as secondary variables due to their influence on microbial growth and their 

practicality for routine monitoring. 

Total Coliform Bacteria is chosen as the primary indicator of water quality because it 

reflects microbial contamination and potential health risks from fecal pollution(Rusdiyanto et 

al., 2021). The presence of these bacteria indicates the possible presence of pathogenic 

microorganisms that can cause illnesses such as gastrointestinal infections (diarrhea, nausea, 

vomiting), urinary tract infections, and skin and eye infections. These risks are particularly 

higher for vulnerable groups, including children, the elderly, and individuals with weakened 

immune systems. 

For the purpose of this study, water quality monitoring data were collected from 120 

sampled points spread across the main rivers of DKI Jakarta. Nevertheless, several locations 

remain unsampled in the monitoring process, necessitating detailed spatial estimation. 

Therefore, this study aims to identify the best semivariogram model for estimating the spatial 

distribution of Total Coliform Bacteria and to estimate the Total Coliform Bacteria 

concentrations at unsampled river locations in DKI Jakarta in 2022 using the Co-Kriging 

method with BOD and COD as secondary variables, in order to produce more accurate and 

detailed spatial estimates to support optimal river water quality management. 
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B. METHODS 

This study employs secondary data on river water quality in DKI Jakarta Province for the 

year 2022, obtained from Dinas Lingkungan Hidup DKI Jakarta through the Satu Data Jakarta 

portal. The dataset includes 120 sampled points and 12 unsampled points, with variables of 

Total Coliform Bacteria (MPN/100 ml), Biochemical Oxygen Demand (BOD) (mg/L), and 

Chemical Oxygen Demand (COD) (mg/L). The data were collected by Dinas Lingkungan Hidup 

DKI Jakarta during the second monitoring period in June 2022. The spatial extent of the study 

covers the entire Jakarta region, excluding the Thousand Islands (Kepulauan Seribu). The 

research stages are illustrated in the flowchart shown in Figure 1. 

 

 
Figure 1.  Research Flow Chart 

 

 

 

 

https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=data-kualitas-air-sungai-2022&data_no=1
https://satudata.jakarta.go.id/open-data/detail?kategori=dataset&page_url=data-kualitas-air-sungai-2022&data_no=1
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1. Stationarity 

Spatial dataset is considered stationary when it exhibits a random pattern without any 

discernible trend (Sikder & Züfle, 2020). The examination of stationary can be performed by 

plotting the data values against their spatial coordinates. 

 

2. Isotropic and Anisotropic 

A semivariogram that models the distance function while considering direction is called an 

anisotropic semivariogram, whereas a semivariogram that models distance without 

considering direction is called an isotropic semivariogram (Abbasnejadfard et al., 2021). If 

anisotropy is present in the data, distances between points are calculated by taking the main 

spatial direction into account. Conversely, if the data are isotropic, distances are calculated 

simply based on the coordinates of each point. 

 

3. Experimental Semivariogram 

The experimental semivariogram is calculated from the measurement data and plotted as 

a function of separation distance (Schiappapietra et al., 2022; Usowicz et al., 2021). It quantifies 

how the similarity between data points changes with distance and serves as the basis for fitting 

a theoretical semivariogram model for subsequent spatial interpolation. 

 

4. Theoretical Semivariogram 

There are several types of theoretical semivariogram models, including the spherical, 

exponential, and Gaussian models (Ding et al., 2018). These models are used to fit the 

experimental semivariogram and describe how spatial correlation changes with distance. Key 

parameters include the nugget effect (C₀), representing variability at very short distances; the 

partial sill (C), reflecting the increase in variance due to spatial correlation; and the range (A), 

which is the distance at which spatial autocorrelation becomes negligible. 

 

5. Cross-Semivariogram 

The cross-semivariogram is used to quantify the spatial relationship between two variables 

(Addis et al., 2023; Payares-garcia et al., 2023). It measures how the values of one variable co-

vary with another variable over space, helping to improve the accuracy of multivariate spatial 

interpolation like Co-Kriging. 

 

6. Cross-validation 

Cross-validation was conducted to evaluate the performance of the candidate models(Lei, 

2020). Specifically, Leave-One-Out Cross-Validation (LOOCV) was applied, where one data 

point is sequentially removed from the dataset and the model is recalibrated to predict that 

point (Liu et al., 2025). The removed data point is then estimated using the theoretical 

semivariogram model in the Co-Kriging method. This process is repeated for all data points, 

producing residuals derived from the differences between the estimated and observed values. 

The accuracy of each model was assessed using the Root Mean Square Error (RMSE), with lower 

RMSE values indicating better predictive performance (Pham et al., 2019). 
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7. Co-Kriging (CK) 

Co-Kriging is a variant of Kriging that utilizes more than one correlated variable to enhance 

prediction accuracy (Xiao et al., 2018). The linear relationship for the estimated value at an 

unsampled points 𝒁̂(𝑠0) in CK can be expressed in Equation (1) as follows (Dowd & Pardo-

igúzquiza, 2024).  

 

 
 (𝒁̂(𝑠0)) =  ∑ ∑ 𝜆𝑗𝑖𝑍𝑗(𝑠𝑖)

𝑘

𝑗=1

𝑛

𝑖=1

      
              

(1) 

 

where 𝑍𝑗(𝑠𝑖) is the variable used at the i-th location, while 𝜆𝑗𝑖 represents the weight for the 

variable used at the i-th location. The weights can be calculated using Equation (2) as follows. 

 

𝝀+(𝑠0) = 𝑪+
−1𝒄+(𝑠0)    (2) 

 

where 𝑪+
−1  is the inverse of the combined semivariance matrix and 𝒄+(𝑠0)  represents the 

semivariance vector for all variables at all locations with respect to 𝑠0 (the unsampled location). 

Then, Equation (3) presents the minimum variance estimator in CK. 

 

𝝈𝑘
2(𝑠0) = 𝛾11(𝑠0, 𝑠0) − ∑ ∑ 𝜆𝑗𝑖

𝑘

𝑗=1

𝑛

𝑖=1

𝛾1𝑗′(𝑠0, 𝑠𝑖) + 𝑚1   
        

(3) 

 

C. RESULT AND DISCUSSION 

1. Descriptive Statistics 

This study utilized river water quality data from the Special Capital Region (DKI) of Jakarta 

in 2022. Figure 2 presents the distribution of the variables used in this study, namely Total 

Coliform Bacteria (𝑍1), Biochemical Oxygen Demand (BOD, 𝑍2), and Chemical Oxygen Demand 

(COD, 𝑍3). 

 

 
Figure 2.  Distribution of Total Coliform Bacteria (𝒁𝟏), Biochemical Oxygen Demand (𝒁𝟐),  

and Chemical Oxygen Demand (𝒁𝟑) 



1390  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1385-1399 

 

 

Figure 2 shows that each variable contains several extreme values (outliers), with 

𝑍1 having 23 outliers, 𝑍2having 13 outliers, and 𝑍3 having 8 outliers. These extreme values may 

result from multiple interacting factors, including: (1) localized point-source pollution, where 

specific river reaches receive concentrated domestic or industrial effluents; (2) spatial 

heterogeneity in river geomorphology and hydrodynamics, such as low-velocity zones, high 

sediment deposition, or stagnant sections that facilitate bacterial accumulation; (3) variation in 

anthropogenic pressures, particularly in densely populated and industrial corridors that 

exhibit pronounced temporal and spatial fluctuations in water quality; and (4) natural 

environmental drivers, including intense rainfall events, tidal influence, and surface runoff, 

which can abruptly elevate microbial and organic contamination levels(Bojarczuk et al., 2018). 

These outliers are not removed, as Co-Kriging utilizes the full variability of the data to 

produce more accurate spatial estimates, including in areas with high pollution levels. 

Removing or treating these outliers would result in the loss of information and alter the 

characteristics of the data. The descriptive statistics of Total Coliform Bacteria ( 𝑍1 ), 

Biochemical Oxygen Demand (𝑍2 ), and Chemical Oxygen Demand (𝑍3 ) from 120 sampling 

points are presented in Table 1 below. 

 

Table 1. Descriptive Statistics of the Variables 

Variable Mean Variance Standard Deviation Minimum Maximum 
Z1* 10.560 264.385 16.260 0.005 50.000 
Z2 12.834 93.005 9.644 1.330 51.130 
Z3 57.510 3656.041 60.465 4.30 441.000 

*expressed in millions 

 

Table 1 shows that the average value of 𝑍1 is 10.56 × 10⁶ MPN/100 ml, indicating a high 

level of microbiological pollution since many rivers have exceeded the water quality standard 

set by Dinas Lingkungan Hidup DKI Jakarta (DLH) of 5,000 MPN/100 ml. The maximum value 

of 50 × 10⁶ MPN/100 ml was found in the Sunter, Buaran, Patukangan, Cideng, and Kalibaru 

Timur rivers, all of which are located in densely populated downstream areas, while the 

minimum value of 0.005 × 10⁶ MPN/100 ml was observed in the Tarum Barat and Angke rivers. 

The high variance (264.385 × 10⁶ MPN/100 ml) and standard deviation (16.260 × 10⁶ 

MPN/100 ml) indicate large variations across sampling points, likely influenced by differences 

in population density, river location (upstream or downstream), sanitation infrastructure, and 

domestic waste management, for 𝑍2, the mean is 12.834 mg/L, far above the DLH standard of 3 

mg/L, with the highest value (51.130 mg/L) in the Mampang River, which is surrounded by 

dense settlements, traditional markets, and food stalls, while the lowest value (1.330 mg/L) 

occurs in the Tarum Barat River, which is not directly used as a domestic wastewater channel. 

The high variance (93.005) and standard deviation (9.644) suggest that organic pollution levels 

vary considerably among rivers. Meanwhile, 𝑍3  shows an average of 57.51 mg/L, also 

exceeding the DLH standard of 25 mg/L, with a maximum of 441.000 mg/L found in the Buaran 

River again located in a densely populated downstream area and the lowest value in the Tarum 

Barat River. The large variance (3,656.041) and standard deviation (60.465) further confirm 

the substantial variability of chemical pollution levels across sampling locations.  
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2. Stationarity Assumption 

The Co-Kriging interpolation method assumes that the dataset used must be stationary, 

meaning that its statistical properties (such as mean and variance) do not vary systematically 

across space. To verify this assumption, spatial distribution plots were generated for Total 

Coliform Bacteria, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD), 

as shown Figure 3. 

 

 
Figure 3. Plots of (a) Total Coliform Bacteria, (b) BOD, and (c) COD 

 

As illustrated in Figure 3, the spatial distribution of colours for the three parameters 

appears randomly scattered, with no visible systematic gradients or directional trends. This 

randomness indicates that the variables exhibit relatively constant statistical behaviour across 

the study area. Therefore, the data for Total Coliform Bacteria, BOD, and COD can be considered 

stationary, satisfying the fundamental assumption required for the Co-Kriging interpolation 

process.  

In this stage of the research, data exploration and validation of statistical assumptions were 

carried out to ensure the reliability of the spatial modelling process. By confirming that the 

datasets meet the stationarity requirement, the analysis can proceed confidently to the 

variogram modelling and Co-Kriging interpolation stages. The results obtained in this section 

form an essential foundation for accurate and unbiased spatial prediction of river water quality 

parameters across the study area. 

 

3. Examination of Anisotropic Semivariogram 

The anisotropic semivariogram analysis is conducted to assess directional dependence in 

the spatial variability of the examined variables. Anisotropy can be evaluated through the 

variogram map (Vmap) as well as by comparing the sill, range, and nugget values of each 
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variable across different directions. The results are summarized in Table 2 and illustrated in 

Figure 4. 

 

 
Figure 4. Vmap 𝒁𝟏, 𝒁𝟐 dan 𝒁𝟑 

 

Figure 4 shows that no dominant direction is evident in Z₁, Z₂, or Z₃. The relatively uniform 

spatial continuity suggests that the data exhibit isotropy rather than anisotropy. 

 

Table 2. Directional Semivariogram 

𝐙𝟏 𝐙𝟐 𝐙𝟑 

Spherical 

 0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135° 

Range 1169 1169 1169 1169 4752 4752 4752 4752 1499 1499 1499 1499 

Sill 303 303 303 303 107 107 107 107 3992 3992 3992 3992 

Nugget 155 155 155 155 39 39 39 39 1051 1051 1051 1051 

Exponential 

 0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135° 

Range 11359 11359 11359 11359 1941 1941 1941 1941 315 315 315 315 

Sill 397 397 397 397 108 108 108 108 4157 4157 4157 4157 

Nugget 242 242 242 242 46 46 46 46 0 0 0 0 

Gaussian 

 0° 45° 90° 135° 0° 45° 90° 135° 0° 45° 90° 135° 

Range 5523 5523 5523 5523 1626 1626 1626 1626 531 531 531 531 

Sill 308 308 308 308 107 107 107 107 4755 4755 4755 4755 

Nugget 141 141 141 141 36 36 36 36 2317 2317 2317 2317 

 

Table 2 shows that the variables 𝑍1, 𝑍2, and 𝑍3 have identical sill, range, and nugget values 

across all directions. This indicates that the data are isotropic. Therefore, Co-Kriging 

interpolation can be performed by modeling only the distance function without considering 

directional effects. 

 

4. Experimental Semivariogram and Cross-Semivariogram 

In the Co-Kriging interpolation method, the initial step prior to performing the interpolation 

is the construction of experimental semivariograms and cross-semivariograms for all variables. 

Figure 5 presents the experimental semivariogram and cross-semivariogram plots.  
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Figure 5. Experimental Semivariogram and Cross-Semivariogram Plots 

 

Figure 5 presents the semivariogram and cross-variogram for three spatial variables (𝑍1, 

𝑍2, and 𝑍3), which are utilized in geostatistical analysis, particularly in the Co-Kriging method. 

The X-axis represents the distance between points (lag distance), while the Y-axis indicates the 

semivariance values that describe the degree of data variation across locations. After obtaining 

the experimental semivariogram and cross-semivariogram, the next step is to fit them with the 

theoretical semivariogram and cross-semivariogram models. 

 

5. Theoretical Semivariogram and Cross-Semivariogram 

The experimental semivariograms and cross-semivariograms were fitted to theoretical 

models to identify the best representation of spatial dependence. In this study, the spherical, 

exponential, and gaussian models were evaluated as candidate theoretical semivariogram 

models. 

 
Figure 6. Spherical, Exponential, and Gaussian Semivariogram and Cross-Semivariogram Models 
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Based on the theoretical semivariogram and cross-semivariogram plots in Figure 6, the 

parameter estimates of the nugget effect (C₀), sill (C₀ + C), and range (A) were derived. These 

estimates are summarized in Table 3. 

 

Table 3. Theoretical Semivariogram and Cross-Semivariogram Models 

Model Variable Nugget effect 
(C0 ) 

Sill 
(C0 + C) 

Range 
(A) 

Nugget To Sill Ratio  
(C0/(C0 + C)% 

Spherical 𝑍1 158.238 303.813 11893.150 52% 
 𝑍2 74.995 114.855 11893.150 65% 
 𝑍3 3607.696 4121.720 11893.150 87% 
 𝑍1 ∗ 𝑍2 57.895 76.371 11893.150 76% 
 𝑍1 ∗ 𝑍3 393.003 444.245 11893.150 88% 
 𝑍2 ∗ 𝑍3 445.225 585.440 11893.150 76% 

Exponential 𝑍1 165.808 400.623 7993.272 41% 
 𝑍2 95.056 99.680 7993.272 95% 
 𝑍3 3900.475 4029.298 7993.272 97% 
 𝑍1 ∗ 𝑍2 50.060 82.577 7993.272 61% 
 𝑍1 ∗ 𝑍3 300.467 473.933 7993.272 63% 
 𝑍2 ∗ 𝑍3 518.199 542.274 7993.272 96% 

Gaussian 𝑍1 165.542 325.053 5457.888 51% 
 𝑍2 87.993 116.691 5457.888 75% 
 𝑍3 4007.563 4076.177 5457.888 98% 
 𝑍1 ∗ 𝑍2 56.498 91.335 5457.888 62% 
 𝑍1 ∗ 𝑍3 343.847 446.306 5457.888 77% 
 𝑍2 ∗ 𝑍3 505.236 535.299 5457.888 94% 

 

Spatial autocorrelation based on the Nugget To Sill Ratio can be classified into three 

categories: strong (≤ 25%), moderate (25%–75%), and weak (> 75%)(Sharma & Sood, 2022). 

Table 3 indicates that under the spherical model, the primary variable 𝑍1 and the secondary 

variable 𝑍2  exhibit moderate spatial autocorrelation, whereas 𝑍3   shows weak spatial 

autocorrelation. The semivariogram plot of the 𝑍1 and 𝑍2 pair demonstrates an increasing and 

stabilizing pattern, suggesting strong spatial correlation between these two variables. In 

contrast, the 𝑍1 and 𝑍3 pair displays a relatively flat pattern, indicating weak or even absent 

spatial correlation. Meanwhile, the 𝑍2  and 𝑍3 pair shows an increasing and stabilizing trend, 

which implies strong spatial correlation. 

The exponential model, the results reveal that 𝑍1  demonstrates moderate spatial 

autocorrelation, while both 𝑍2  and 𝑍3  exhibit weak autocorrelation. Nevertheless, the 

semivariogram of the 𝑍1 and 𝑍2 pair again shows a rising and stabilizing pattern, suggesting 

strong spatial correlation. The 𝑍1 and 𝑍3 pair also indicates the presence of spatial correlation, 

although not as strong as that of the 𝑍1 and 𝑍2 pair. In contrast, the 𝑍2 and 𝑍3  pair presents a 

relatively flat pattern, reflecting weak or negligible correlation. 

Under the Gaussian model, both 𝑍1  and 𝑍2  display moderate spatial autocorrelation, 

whereas 𝑍3 continues to show weak autocorrelation. Similar to the spherical and exponential 

models, the 𝑍1  and 𝑍2  pair maintains an increasing and stabilizing trend, indicating strong 

spatial correlation. The 𝑍1 and 𝑍3 pair also suggests the existence of spatial correlation, albeit 

weaker than that observed between 𝑍1  and 𝑍2. Conversely, the 𝑍2  and 𝑍3 pair reveals a flat 

pattern, indicating weak or absent spatial correlation. 
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Subsequently, after fitting the experimental semivariogram and cross-semivariogram with 

their theoretical models, the next step is to select the most suitable model among the three 

theoretical semivariogram models (spherical, exponential, and Gaussian) for estimating the 

Total Coliform Bacteria using Co-Kriging (CK) interpolation. The selection of the best-fitting 

model is carried out through cross-validation using the Leave-One-Out Cross-Validation 

(LOOCV) approach. 

 

6. Cross-Validation 

The selection of the best-fitting theoretical semivariogram and cross-semivariogram model 

was carried out through cross-validation using the Leave-One-Out Cross-Validation (LOOCV) 

method. The evaluation criterion was based on the Root Mean Square Error (RMSE) for each 

model, with the model yielding the lowest RMSE considered the most optimal, as shown in 

Table 4. 

 

Table 4. Root Mean Square Error (RMSE) Values for Each Model 

Model RMSE 
Spherical 11.543 

Exsponential 11.549 
Gaussian 11.468 

 

Based on Table 4, the Gaussian model produced the lowest RMSE value of 11.468 compared 

to the Spherical and Exponential models. Therefore, it can be concluded that the Gaussian 

model is the most suitable theoretical semivariogram for estimating Total Coliform Bacteria in 

DKI Jakarta in 2022 using Co-Kriging interpolation. 

 

7. Unsampled Point Interpolation Using Co-Kriging 

After identifying the best-fitting theoretical semivariogram model, the next step is to 

estimate Total Coliform Bacteria concentrations at unsampled locations in the rivers of DKI 

Jakarta for 2022 using the Co-Kriging method with the Gaussian theoretical semivariogram 

model. Figure 7 below shows the spatial distribution map of the estimated values for both 

unsampled and sampled locations in the rivers of DKI Jakarta in 2022. Sampled locations are 

represented by circles, while unsampled locations are indicated by triangles. 
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Figure 7. Co-Kriging Interpolation of Total Coliform Bacteria 

 

Table 5 below presents the descriptive statistics of the estimated Total Coliform Bacteria 

at unsampled locations in DKI Jakarta in 2022. 

 

Table 5. Descriptive Statistics of Estimated Total Coliform Bacteria at Unsampled Locations 

Mean Variance Std. Deviation Min Max 
7.711* 19.409* 4.406* 2.382*  14.965* 

                      * expressed in millions 

 

Based on Table 5, the mean estimated value of Total Coliform Bacteria at unsampled 

locations is 7.711 × 106 MPN/100ml. This is lower than the mean value observed at sampled 

points, which is 10.560 × 106 MPN/100ml. The variance and standard deviation of the 

estimates at unsampled locations are also smaller than those at sampled points, being 

19.409 × 106 MPN/100ml and 4.406× 106 MPN/100ml, respectively. Furthermore, the range 

between the maximum and minimum estimated values is narrower compared to the sampled 

points, spanning from 2.382 ×  106 106 MPN/100ml to 14.965 ×  106  MPN/100ml. The 

lowest estimated Total Coliform Bacteria concentration was observed in the upper reach of the 

Ciliwung River at geographic coordinates (106.838; –6.343), which corresponds to areas with 

relatively higher elevation, better flow velocity, and lower population density. These conditions 

typically promote better dilution and self-purification processes, resulting in reduced bacterial 

concentrations. In contrast, the highest concentration was found in another section of the 

Ciliwung River at coordinates (106.817; –6.147), which lies within the downstream area of 

Jakarta. This segment is characterized by dense residential settlements, industrial activities, 

and frequent domestic wastewater discharge directly into the river. The limited water 

circulation and accumulation of organic materials in this area further enhance microbial 

proliferation. 

These spatial differences highlight the significant influence of both anthropogenic and 

natural factors on bacterial distribution within the Ciliwung River. Upstream regions tend to 
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exhibit better water quality due to reduced human pressure and faster flow, whereas 

downstream sections suffer from pollutant accumulation, leading to high Total Coliform levels 

and increased health and environmental risks. This observation is consistent with the spatial 

distribution map of the estimates presented in Figure 7, where the estimated values closely 

match those of neighbouring locations. The variance of the estimates is relatively high, 

indicating that the Total Coliform Bacteria counts vary considerably across different river 

points. In this study, the high variance may be attributed to the presence of outliers in the 

dataset and the inclusion of a secondary variable, Chemical Oxygen Demand (COD), which 

exhibits weak spatial autocorrelation. Additionally, the correlation between Total Coliform 

Bacteria and COD is also weak. 

These spatial prediction results underscore the severe microbial pollution affecting river 

systems in DKI Jakarta, particularly the Ciliwung River, which flows through highly populated 

areas, informal settlements, and neighborhoods with limited domestic wastewater treatment 

infrastructure. The pronounced Total Coliform hotspots observed in downstream sections of 

the Ciliwung reflect cumulative pollutant loads originating upstream and the reduced natural 

purification capacity as the river enters denser urban cores. This condition aligns with findings 

by Pamurda et al. (2023), who reported that population density and poor sanitation 

infrastructure significantly influence water quality deterioration along the Ciliwung River, 

especially in Jakarta’s urbanized regions. Similarly, Priyono et al. (2021) observed that the 

water quality in the Bogor segment of the Ciliwung River declines due to increased domestic 

waste input and runoff from surrounding residential areas, further supporting the observed 

spatial patterns of Total Coliform distribution. 

The smoother Co-Kriging estimates at unsampled locations indicate stable spatial trends 

shaped by hydrological connectivity and the continuous downstream transport of fecal 

contaminants. Environmentally, these findings highlight the vulnerability of the Ciliwung River 

as a critical urban water corridor and underscore significant public health risks for 

communities residing along its banks or engaging in informal water contact activities. 

Accordingly, this study provides scientific support for prioritizing sanitation improvements, 

strengthening wastewater management infrastructure, and implementing targeted monitoring 

interventions along key reaches of the Ciliwung to mitigate microbial exposure and promote 

sustainable urban river management in Jakarta. 

 

D. CONCLUSION AND SUGGESTIONS 

This study demonstrates the capability of Co-Kriging to predict the spatial distribution of 

Total Coliform Bacteria in the rivers of DKI Jakarta by incorporating BOD and COD as secondary 

variables. The approach effectively identified microbial contamination hotspots, particularly in 

densely populated downstream areas, highlighting the influence of anthropogenic activities on 

urban river water quality. 

Despite its promising performance, the study acknowledges limitations related to extreme 

outliers, weak correlations with some auxiliary variables, and the use of a single-year dataset, 

which may constrain temporal interpretation. Future research should explore robust or hybrid 

Co-Kriging approaches, integrate additional water quality indicators with stronger spatial 

relationships, and apply multi-year datasets to capture temporal dynamics. 
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The novelty of this work lies in applying a multivariate Co-Kriging framework with BOD and 

COD as auxiliary predictors and systematically evaluating semivariogram models to improve 

predictive reliability. This study advances geostatistical applications for microbial water 

quality assessment in developing megacities and provides practical insights for supporting 

targeted monitoring and data-driven river management in urban tropical environments. 
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