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 Given any graph 𝐺 that contains no isolated vertices, a labeling 𝑐 is a mapping from 
its vertex set to the set of integers modulo 𝑘  (𝑐: 𝑉(𝐺) → ℤ𝑘) for 𝑘 ≥ 2, adjacent 
vertices are allowed to share the same color. The number of color labels of a vertex 

𝑣 (𝜎(𝑣)), is the number of color labels of the neighborhood of vertex 𝑣 (𝑁(𝑣)). A 

labeling 𝑐  is a modular 𝑘-coloring of 𝐺  if 𝜎(𝑥)  ≠  𝜎(𝑦)  in ℤ𝑘  for all vertices 𝑥, 𝑦 
that are neighbors in 𝐺. Denoted as 𝑚𝑐(𝐺), the modular chromatic number of 𝐺 is 
defined as the least integer 𝑘 that allows for a modular 𝑘-coloring of the graph. This 
research seeks to ascertain the modular chromatic number of the comb graph 𝐶𝑏𝑛, 
the lintang graph 𝐿𝑛, and the butterfly graph 𝐵𝐹(𝑛). The first step in this research 
is to define the labeling 𝑐, then determine (𝑁(𝑣)). Next, determine the number of 
color labels from the neighborhood at each vertex with 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ𝑘  for 𝑥, 𝑦 
being all neighboring vertices. After the condition 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ𝑘  is satisfied, 
ascertain 𝑚𝑐(𝐺). By performing the same steps on each graph with increasingly 
larger values of 𝑛 , a modular coloring pattern will emerge, which is used to 
formulate the modular coloring formula. This process concludes with the 
formulation of a modular coloring formula and the determination of the modular 
chromatic number for comb graph 𝐶𝑏𝑛 , lintang graph 𝐿𝑛 , and butterfly graph 
𝐵𝐹(𝑛). Based on this research, 𝑚𝑐(𝐶𝑏𝑛) = 2, 𝑚𝑐(𝐿𝑛) = 2, and 𝑚𝑐(𝐵𝐹(𝑛)) = 3 are 
obtained. 
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A. INTRODUCTION  

Graph coloring is a frequently discussed topic because it can solve various problems in life. 

Graph coloring can be used to solve problems such as work shift scheduling, networks, and 

many more (Rajagaspar & Senthil, 2022). One type of modular coloring is vertex coloring. 

Vertex coloring is the process of assigning colors to graph vertices, with the constraint that any 

two adjacent vertices must not share the same color (Gross et al., 2018). In contrast to standard 

vertex coloring, one variation permits neighboring vertices to share the same color, namely 

modular coloring. Modular coloring is a form of vertex coloring that uses a structured but more 

permissive set of rules. Modular coloring has rules that take into account the number of color 

labels on a vertex obtained by summing the color labels of the vertex's neighborhood. This rule 

distinguishes modular coloring from ordinary vertex coloring. Modular coloring allows 

neighboring vertices to share the same color label, but the number of color labels from the 

neighborhood of the neighboring vertices differs in ℤ𝑘 .  

Modular coloring was introduced by Okamoto, Salehi, and Zhang (Okamoto et al., 2010). In 

their research, modular coloring was applied to chessboards to fulfill conditions that 
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corresponded to initial assumptions on chessboards. These conditions stated that when coins 

were placed on several squares of a chessboard, for two squares with the same color, the coin 

counts on adjacent squares had identical parity. In contrast, for two adjacent squares that have 

different colors, the number of coins in each square has a different parity. By conducting 

periodic coin placement experiments, a coin placement pattern was discovered, which was then 

reformulated as a coin placement rule using the concept of modular arithmetic, so that it could 

meet the conditions in accordance with the initial assumptions of the chessboard. 

In another study by Kusumaningrum and Rahadjeng, modular coloring was used to 

determine the modular chromatic number in star graphs 𝑆𝑛, caterpillar graphs 𝐶(𝑚;𝑛1,𝑛2,…,𝑛𝑚), 

fan graphs 𝐹𝑛 , helmet graphs 𝐻𝑛 , and triangular book graphs 𝐵𝑡𝑛  (Kusumaningrum & 

Rahadjeng, 2021). The findings obtained from this research are as follows, 𝑚𝑐(𝑆𝑛) = 2 , 

𝑚𝑐(𝐶(𝑚;𝑛1,𝑛2,…,𝑛𝑚)) = 2, 𝑚𝑐(𝐹𝑛) = 3, 𝑚𝑐(𝐻𝑛) = 3 if 𝑛 even,𝑚𝑐(𝐻𝑛) = 4 if 𝑛 odd, 𝑚𝑐(𝐵𝑡𝑛) = 3. 

Based on these, there are still many graphs that can be used as research objects in applying 

modular coloring. 

This research uses the comb graph 𝐶𝑏𝑛, the lintang graph 𝐿𝑛, and the butterfly graph 𝐵𝐹(𝑛) 

as modular coloring objects. The comb graph 𝐶𝑏𝑛 is formed through the corona product of the 

graph 𝑃𝑛 and the graph 𝐾1. (Barik et al., 2018; Akram & Nawaz, 2015; Tarawneh et al., 2016; 

Basavanagoud et al., 2021), the lintang graph 𝐿𝑛 is formed by performing the join operation on 

the graph 𝐾2 and the graph 𝐾𝑛 (Artes & Dignos, 2015; Akram & Nawaz, 2015), and the butterfly 

graph 𝐵𝐹(𝑛) is a combination of several graphs and all other vertices are adjacent to a central 

vertex. This research seeks to both construct modular colorings and compute the modular 

chromatic number for comb graphs 𝐶𝑏𝑛 , lintang graphs 𝐿𝑛 , and butterfly graphs 𝐵𝐹(𝑛)  by 

using modular arithmetic as the main basis for performing modular coloring on the graph used. 

 

B. METHODS 

This research uses combinatorial exploration analysis techniques, manually testing 

modular coloring starting with values of 𝑘 ≥ 2 on comb graphs 𝐶𝑏𝑛 for 𝑛 ≥ 2, lintang graphs 

𝐿𝑛 for 𝑛 ≥ 1, and butterfly graphs 𝐵𝐹(𝑛) for 𝑛 ≥ 2. Increasing the value of 𝑛 in each graph will 

form a modular coloring pattern that will be used to determine whether modular coloring with 

a certain value of 𝑘 can be applied to each graph with an increasing value of 𝑛. Modular coloring 

begins by labeling 𝑐: 𝑉(𝐺) → ℤ𝑘  for 𝑘 ≥ 2, where 𝐺  denotes the comb graph 𝐶𝑏𝑛 , the lintang 

graph 𝐿𝑛, and the butterfly graph 𝐵𝐹(𝑛). Next, determine the neighborhood of each vertex 𝑣 

and calculate the number of color labels from the neighborhood at each vertex 𝑣, noting that 

𝜎(𝑥) ≠ 𝜎(𝑦)  in ℤ𝑘  for 𝑥, 𝑦  are all neighboring vertices. If there is 𝜎(𝑥) = 𝜎(𝑦)  in ℤ𝑘 , then 𝑐 

labeling will be performed again until all possible 𝑐 labelings have been explored. If there is still 

𝜎(𝑥) = 𝜎(𝑦) in ℤ𝑘  in all possible 𝑐  labelings, then the value of 𝑘  is increased by 1. After the 

condition 𝜎(𝑥) ≠ 𝜎(𝑦)  in ℤ𝑘  is satisfied, ascertain 𝑚𝑐(𝐶𝑏𝑛) , 𝑚𝑐(𝐿𝑛) , and 𝑚𝑐(𝐵𝐹(𝑛) . The 

modular chromatic number is defined as the least integer 𝑘  that allows for a modular 𝑘 -

coloring of the graph.  
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C. RESULT AND DISCUSSION 

Formally, a graph 𝐺 consists of 𝑉 which represents a non-empty set of vertices and E which 

represents a set of edges connecting the vertices (Gross et al., 2018; Koh et al., 2015). The 

graphs discussed are the comb graph 𝐶𝑏𝑛, the lintang graph 𝐿𝑛, and the butterfly graph 𝐵𝐹(𝑛). 

A path graph, consisting of 𝑛 vertices and 𝑛 − 1 edges is denoted as 𝑃𝑛 for 𝑛 ≥ 2. A complete 

graph 𝐾𝑛  with 𝑛 ≥ 1 is a simple graph where each vertex is adjacent to every other vertex 

(Mohideen, 2017; Azizin, 2024; Koh et al., 2015). A comb graph denoted as 𝑃𝑛⊙𝐾1, which has 

2𝑛 vertices and 2𝑛 − 1 edges (Zhang et al., 2020; Veeraragavan & Arul, 2024). A comb graph 

𝐶𝑏𝑛 is formed from the set of vertices 𝑉(𝐶𝑏𝑛) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖  |1 ≤ 𝑖 ≤ 𝑛} and the set of 

edges 𝐸(𝐶𝑏𝑛) = {(𝑥𝑖 , 𝑥𝑖+1)|1 ≤ 𝑖 < 𝑛} ∪ {(𝑥𝑖 , 𝑦𝑖)|1 ≤ 𝑖 < 𝑛} . Comb graph 𝐶𝑏𝑛  is shown in 

Figure 1 (𝑎). The complement of a graph 𝐺 (denoted by 𝐺̅) is a graph with a set of vertices 𝑉(𝐺) 

such that two vertices are adjacent in 𝐺̅ if and only if they are not adjacent in 𝐺 (Gutman et al., 

n.d.; Upadhyay et al., 2020; Koh et al., 2015). The lintang graph 𝐿𝑛 is defined by 𝐿𝑛 = (𝐾2̅̅ ̅) +

(𝐾1̅̅ ̅) for 𝑛 ≥ 1 (Fran et al., 2025; Wijayanti et al., 2016). The lintang graph 𝐿𝑛 is formed from 

the set of vertices 𝑉(𝐿𝑛) = {𝑥1, 𝑥2} ∪ {𝑦𝑖  |1 ≤ 𝑖 ≤ 𝑛}  and the set of edges 𝐸(𝐿𝑛) =

{(𝑥1, 𝑦𝑖)|1 ≤ 𝑖 ≤ 𝑛} ∪ {(𝑥2, 𝑦𝑖)|1 ≤ 𝑖 ≤ 𝑛}. Lintang graph 𝐿𝑛 is shown in Figure 1 (𝑏). A butterfly 

graph 𝐵𝐹(𝑛) with order 𝑛 does not include apex vertices, has (2𝑛 + 3) vertices with 4𝑛 edges 

(M. Shalaan & A. Omran, 2020; Ponraj et al., 2021). The butterfly graph is formed from the set 

of vertices 𝑉(𝐵𝐹(𝑛)) = {𝑧} ∪ {𝑥𝑖|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖|0 ≤ 𝑖 ≤ 𝑛} and the set of edges 𝐸(𝐵𝐹(𝑛)) =

{(𝑥0, 𝑧), (𝑦0, 𝑧)} ∪ {(𝑥𝑖 , 𝑧)|1 ≤ 𝑖 ≤ 𝑛} ∪ {(𝑥𝑖 , 𝑥𝑖+1)|1 ≤ 𝑖 < 𝑛} ∪ {(𝑦𝑖 , 𝑧)|1 ≤ 𝑖 ≤ 𝑛} ∪

{(𝑦𝑖 , 𝑦𝑖+1)|1 ≤ 𝑖 < 𝑛}. Butterfly graph 𝐵𝐹(𝑛) is shown in Figure 1 (𝑐). 

 

 
Figure 1. (𝒂) Comb Graph 𝑪𝒃𝟒, (𝒃) Lintang Graph 𝑳𝟒, (𝒄) Butterfly Graph 𝑩𝑭(𝟑) 

 

Definition 1 (Sumathi & Tamilselvi, 2022; Sumathi & Tamilselvi, 2024; Nicholas, 2017; 

Pamungkas, 2024; Sumathi & Tamilselvi, 2023; Sumathi, 2023) For 𝒗 is a vertex in graph 𝑮, the 

set of vertices adjacent to 𝒗 is denoted as 𝑵(𝒗). Consider a vertex labeling, 𝒄: 𝑽(𝑮) → ℤ𝒌 (𝒌 ≥
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𝟐) for a graph 𝑮 that has no isolated vertices, where adjacent vertices are permited to have the 

same color. The number of color label 𝝈(𝒗)  of 𝑮  is the total number of color labels of the 

vertices in 𝑵(𝒗), that is, 

𝜎(𝑣) = ∑ 𝑐(𝑢)

𝑢∈𝑁(𝑣)

. 

 

A labeling 𝑐  is a modular 𝑘-coloring for 𝑘 ≥ 2 of 𝐺  if 𝜎(𝑥)  ≠  𝜎(𝑦) on ℤ𝑘  for all vertices 𝑥, 𝑦 

that are adjacent in 𝐺. The minimum integer 𝑘 where 𝐺 has a modular 𝑘-coloring, denoted as 

𝑚𝑐(𝐺).  

 

From Definition 1, a modular 3-coloring is given on the graph 𝐺5 with the set of vertices 

 

𝑉(𝐺5) = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 

 

and the set of edges 

 

𝐸(𝐺5) = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣4, 𝑣5), (𝑣5, 𝑣1)} 

 

Figure 2 is a modular coloring because the number of colors (red numbers) on each neighboring 

vertex has a different value in ℤ3. The first step is to perform labeling 𝑐: 𝑉(𝐺5) → ℤ3 that allows 

neighboring vertices can share the same color (black number). Then, determine the 

neighborhood of each vertex in graph 𝐺5 and calculate the number of colors of each vertex by 

summing the colors of the vertex's neighborhood. Then, check the number of colors of the 

neighboring vertices in 𝐺5, noting that the number of colors of the neighboring vertices must 

not have the same value in ℤ3. If the neighboring vertices have different numbers of colors, then 

the modular coloring rule is satisfied, so the labeling 𝑐  is called a modular 3 -coloring. So 

𝑚𝑐(𝐺5) = 3. 

 

 
Figure 2 Modular 𝟑-Coloring On 𝑮𝟓 Graph 
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The following is the modular coloring theorem on comb graphs 𝐶𝑏𝑛 , lintang graphs 𝐿𝑛 , and 

butterfly graphs 𝐵𝐹(𝑛). 

Theorem 1 Suppose 𝑪𝒃𝒏 is a comb graph with 𝒏 ≥ 𝟐, then 𝒎𝒄(𝑪𝒃𝒏) = 𝟐. 

Proof. Suppose a comb graph 𝐶𝑏𝑛 with a set of vertices, 

 

𝑉(𝐶𝑏𝑛) = {𝑥𝑖|1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖|1 ≤ 𝑖 ≤ 𝑛} 

 

Case 1. For even 𝑛 

Define the labeling 𝑐: 𝑉(𝐶𝑏𝑛) → ℤ2: 

𝑐(𝑣) =

{
 
 

 
 
0 when 𝑣 = 𝑥𝑖 , 𝑖 odd

0 when 𝑣 = 𝑦𝑖 , 𝑖 even

0 when 𝑣 = 𝑦𝑖 , 𝑖 = 1

1 when 𝑣 = 𝑥𝑖 , 𝑖 even

1 when 𝑣 = 𝑦𝑖 , 𝑖 ≡ 1(𝑚𝑜𝑑 2), 𝑖 ≠ 1

thus obtained 

𝜎(𝑣) = {

0 when 𝑣 = 𝑥𝑖 , 𝑖 even
0 when 𝑣 = 𝑦𝑖 , 𝑖 odd
1 when 𝑣 = 𝑥𝑖 , 𝑖 odd
1 when 𝑣 = 𝑦𝑖 , 𝑖 even

 

obtained condition 

(𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑦𝑖) ∈ 𝐸(𝐶𝑏𝑛), for 𝑖 = 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑦𝑖), (𝑥𝑖 , 𝑥𝑖+1) ∈ 𝐸(𝐶𝑏𝑛), for 𝑖 ≠ 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑦𝑖) ∈ 𝐸(𝐶𝑏𝑛), for 𝑖 = 𝑛 

 

Under these conditions, it can be seen that 𝜎(𝑥𝑖) ≠ 𝜎(𝑦𝑖). Based on Definition 1, for 𝑥, 𝑦 are two 

adjacent vertices in 𝐶𝑏𝑛 , if 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ2 , then 𝑐  is a modular 2 -coloring such that 

𝑚𝑐(𝐶𝑏𝑛) = 2. 

 

Case 2. For odd 𝑛 

Define the labeling 𝑐: 𝑉(𝐶𝑏𝑛) → ℤ2: 

𝑐(𝑣) = {

0 when 𝑣 = 𝑥𝑖 , 𝑖 even
0 when 𝑣 = 𝑦𝑖 , 𝑖 odd
1 when 𝑣 = 𝑥𝑖 , 𝑖 odd
1 when 𝑣 = 𝑦𝑖 , 𝑖 even

 

thus obtained 

𝜎(𝑣) = {

0 when 𝑣 = 𝑥𝑖 , 𝑖 odd
0 when 𝑣 = 𝑦𝑖 , 𝑖 even
1 when 𝑣 = 𝑥𝑖 , 𝑖 even
1 when 𝑣 = 𝑦𝑖 , 𝑖 odd

 

obtained condition 

(𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑦𝑖) ∈ 𝐸(𝐶𝑏𝑛), for 𝑖 = 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑦𝑖), (𝑥𝑖 , 𝑥𝑖+1) ∈ 𝐸(𝐶𝑏𝑛), for 𝑖 ≠ 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑦𝑖) ∈ 𝐸(𝐶𝑏𝑛), for 𝑖 = 𝑛 
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Under these conditions, it can be seen that 𝜎(𝑥𝑖) ≠ 𝜎(𝑦𝑖). Based on Definition 1, for 𝑥, 𝑦 are two 

adjacent vertices in 𝐶𝑏𝑛 , if 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ2 , then 𝑐  is a modular 2 -coloring such that 

𝑚𝑐(𝐶𝑏𝑛) = 2. 

 

Example. Here is a modular coloring on the graph 𝐶𝑏3 . The labeling 𝑐: 𝑉(𝐶𝑏3) → ℤ2  allows 

neighboring vertices to have the same color (the colors of the labeling c are represented by 

black numbers). The number of colors on vertex 𝑥1(𝜎(𝑥1)) is obtained by summing the colors 

from the neighborhood of 𝑥1, namely 𝑐(𝑥2) + 𝑐(𝑦1) = 0 + 0 = 0 on ℤ2, so 𝜎(𝑥1) = 0. 𝜎(𝑥2) =

𝑐(𝑥1) + 𝑐(𝑥3) + 𝑐(𝑦2) = 1 + 1 + 1 = 1, 𝜎(𝑥3) = 𝑐(𝑥2) + 𝑐(𝑦3) = 0 + 0 = 0, 𝜎(𝑦1) = 𝑐(𝑥1) =

1, 𝜎(𝑦2) = 𝑐(𝑥2) = 0, 𝜎(𝑦3) = 𝑐(𝑥3) = 1 . This result shows that for 𝑥, 𝑦  are two adjacent 

vertices in 𝐶𝑏3, then 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ2 (the number of colors on the vertex is represented by 

the red number). Thus, 𝑐 is a modular 2-coloring and 𝑚𝑐(𝐶𝑏3) = 2. The modular coloring on 

the graph 𝐶𝑏3 is represented in Figure 3. 

 

 
Figure 3. 𝟐-Modular Coloring On 𝑪𝒃𝟑 

 

Theorem 2 Suppose 𝑳𝒏 is a lintang graph with 𝒏 ≥ 𝟏, then 𝒎𝒄(𝑳𝒏) = 𝟐. 

Proof. Suppose we have a graph 𝐿𝑛 with a set of vertices, 

𝑉(𝐿𝑛) = {𝑥1, 𝑥2} ∪ {𝑦𝑖|1 ≤ 𝑖 ≤ 𝑛} 

Case 1. For even 𝑛 

Define the labeling 𝑐: 𝑉(𝐿𝑛) → ℤ2: 

𝑐(𝑣) = {

0 when 𝑣 = 𝑥1
1 when 𝑣 = 𝑥2
1 when 𝑣 = 𝑦𝑖 , 𝑖 = 1,2, … , 𝑛

 

thus obtained 

𝜎(𝑣) = {
0 when 𝑣 = 𝑥𝑖 , 𝑖 = 1,2
1 when 𝑣 = 𝑦𝑗 , 𝑗 = 1,2,… , 𝑛

 

obtained condition 

(𝑥1, 𝑦𝑖), (𝑥2, 𝑦𝑖) ∈ 𝐸(𝐿𝑛), for 𝑖 = 1,2,… , 𝑛 

Under these conditions, it can be seen that 𝜎(𝑥𝑖) ≠ 𝜎(𝑦𝑗). Based on Definition 1, for 𝑥, 𝑦 are two 

adjacent vertices in 𝐿𝑛, if 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ2, then 𝑐 is a modular 2-coloring such that 𝑚𝑐(𝐿𝑛) =

2. 

 

Case 2. For odd 𝑛 

Define the labeling 𝑐: 𝑉(𝐿𝑛) → ℤ2: 
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𝑐(𝑣) =

{
 

 
0 when 𝑣 = 𝑥1
0 when 𝑣 = 𝑦1
1 when 𝑣 = 𝑥2
1 when 𝑣 = 𝑦𝑖 , 𝑖 = 2,3, … , 𝑛

 

thus obtained 

𝜎(𝑣) = {
0 when 𝑣 = 𝑥𝑖 , 𝑖 = 1,2
1 when 𝑣 = 𝑦𝑗 , 𝑗 = 1,2,… , 𝑛

 

obtained condition 

(𝑥1, 𝑦𝑖), (𝑥2, 𝑦𝑖) ∈ 𝐸(𝐿𝑛), for 𝑖 = 1,2,… , 𝑛 

Under these conditions, it can be seen that 𝜎(𝑥𝑖) ≠ 𝜎(𝑦𝑗). Based on Definition 1, for 𝑥, 𝑦 are two 

adjacent vertices in 𝐿𝑛, if 𝜎(𝑥) ≠ 𝜎(𝑦) in ℤ2, then 𝑐 is a modular 2-coloring such that 𝑚𝑐(𝐿𝑛) =

2. 

 

Theorem 3 Suppose 𝑩𝑭(𝒏) is a butterfly graph with 𝒏 ≥ 𝟐, then 𝒎𝒄(𝑩𝑭(𝒏)) = 𝟑. 

Proof. In this proof, modular coloring will be shown on the 𝐵𝐹(𝑛) butterfly graph when 𝑛 is 

even. For odd 𝑛, it can be proven using similar steps. Suppose the 𝐵𝐹(𝑛) butterfly graph with a 

set of vertices, 

𝑉(𝐵𝐹(𝑛)) = {𝑧} ∪ {𝑥𝑖|0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖|0 ≤ 𝑖 ≤ 𝑛} 
When 𝑛 is even: 

Case 1. 𝑛 = 𝑎𝑘 + 1 with, 

𝑎𝑘+1 = {
𝑎𝑘 + 2 if 𝑘 is odd 
𝑎𝑘 + 10 if 𝑘 is even

 

with 𝑎1 = 2. 

Define the labeling 𝑐: 𝑉(𝐵𝐹(𝑛)) → ℤ3: 

𝑐(𝑣) =

{
 
 
 

 
 
 
2 when 𝑣 = 𝑥0
2 when 𝑣 = 𝑦0
1 when 𝑣 = 𝑥𝑖 with 𝑖 = 4𝑏 − 2, 𝑏 ∈ ℕ
1 when 𝑣 = 𝑦𝑖 with 𝑖 = 4𝑏 − 2, 𝑏 ∈ ℕ

1 when 𝑣 = 𝑧
0 when 𝑣 = 𝑥𝑖 others

0 when 𝑣 = 𝑦𝑖 others

 

thus obtained 

𝜎(𝑣) =

{
 
 
 

 
 
 
0 when 𝑣 = 𝑧
1 when 𝑣 = 𝑥0
1 when 𝑣 = 𝑦0
1 when 𝑣 = 𝑥𝑖 , 𝑖 even
1 when 𝑣 = 𝑦𝑖 , 𝑖 even
2 when 𝑣 = 𝑥𝑖 , 𝑖 odd
2 when 𝑣 = 𝑦𝑖 , 𝑖 odd

 

obtained condition 

(𝑥𝑖 , 𝑧), (𝑥𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 0 

(𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖+1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖−1), (𝑦𝑖 , 𝑦𝑖+1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 1 < 𝑖 < 𝑛 
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(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖−1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 𝑛 

 

This shows that 𝜎(𝑧) ≠ 𝜎(𝑥0), 𝜎(𝑧) ≠ 𝜎(𝑦0), 𝜎(𝑧) ≠ 𝜎(𝑥𝑖) , and 𝜎(𝑧) ≠ 𝜎(𝑦𝑖).  Based on 

Definition 1, for 𝑥 , 𝑦  are two adjacent vertices in 𝐵𝐹(𝑛) , if 𝜎(𝑥) ≠ 𝜎(𝑦)  in ℤ3 , then 𝑐  is a 

modular 3-coloring such that 𝑚𝑐(𝐵𝐹(𝑛)) =  3. 

 

Case 2. 𝑛 = 𝑎𝑘+1 with, 

𝑎𝑘+1 = {
𝑎𝑘 + 2 if 𝑘 is odd
𝑎𝑘 + 10 if 𝑘 is even

 

with 𝑎1 = 6. 

Define the labeling 𝑐: 𝑉(𝐵𝐹(𝑛)) → ℤ3: 

𝑐(𝑣) =

{
 
 
 

 
 
 
2 when 𝑣 = 𝑥0
1 when 𝑣 = 𝑥𝑖 with 𝑖 = 4𝑏 − 2, 𝑏 ∈ ℕ
1 when 𝑣 = 𝑦𝑖 with 𝑖 = 4𝑏 − 2, 𝑏 ∈ ℕ

1 when 𝑣 = 𝑧
0 when 𝑣 = 𝑦0
0 when 𝑣 = 𝑥𝑖 others

0 when 𝑣 = 𝑦𝑖 others

 

thus obtained 

𝜎(𝑣) =

{
 
 
 

 
 
 
0 when 𝑣 = 𝑧
1 when 𝑣 = 𝑥0
1 when 𝑣 = 𝑦0
1 when 𝑣 = 𝑥𝑖 , 𝑖 even
1 when 𝑣 = 𝑦𝑖 , 𝑖 even
2 when 𝑣 = 𝑥𝑖 , 𝑖 odd
2 when 𝑣 = 𝑦𝑖 , 𝑖 odd

 

obtained condition 

(𝑥𝑖 , 𝑧), (𝑥𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 0 

(𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖+1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖−1), (𝑦𝑖 , 𝑦𝑖+1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 1 < 𝑖 < 𝑛 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖−1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 𝑛 

 

This shows that 𝜎(𝑧) ≠ 𝜎(𝑥0), 𝜎(𝑧) ≠ 𝜎(𝑦0), 𝜎(𝑧) ≠ 𝜎(𝑥𝑖) , and 𝜎(𝑧) ≠ 𝜎(𝑦𝑖).  Based on 

Definition 1, for 𝑥 , 𝑦  are two adjacent vertices in 𝐵𝐹(𝑛) , if 𝜎(𝑥) ≠ 𝜎(𝑦)  in ℤ3 , then 𝑐  is a 

modular 3-coloring such that 𝑚𝑐(𝐵𝐹(𝑛)) =  3. 

 

Case 3. 𝑛 = 𝑎𝑘+1 with, 

𝑎𝑘+1 = {
𝑎𝑘 + 2 if 𝑘 is odd
𝑎𝑘 + 10 if 𝑘 is even

 

with 𝑎1 = 10. 

Define the labeling 𝑐: 𝑉(𝐵𝐹(𝑛)) → ℤ3: 
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𝑐(𝑣) =

{
 
 
 

 
 
 
2 when 𝑣 = 𝑥0
1 when 𝑣 = 𝑦0
1 when 𝑣 = 𝑥𝑖 with 𝑖 = 4𝑏 − 2, 𝑏 ∈ ℕ
1 when 𝑣 = 𝑦𝑗 with 𝑗 = 4𝑏 − 2, 𝑏 ∈ ℕ

1 when 𝑣 = 𝑧
0 when 𝑣 = 𝑥𝑖 others

0 when 𝑣 = 𝑦𝑗 others

 

thus obtained 

𝜎(𝑣) =

{
 
 
 

 
 
 
0 when 𝑣 = 𝑧
1 when 𝑣 = 𝑥0
1 when 𝑣 = 𝑦0
1 when 𝑣 = 𝑥𝑖 , 𝑖 even
1 when 𝑣 = 𝑦𝑗 , 𝑗 even

2 when 𝑣 = 𝑥𝑖 , 𝑖 odd
2 when 𝑣 = 𝑦𝑗 , 𝑗 odd

 

obtained condition 

(𝑥𝑖 , 𝑧), (𝑥𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 0 

(𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖+1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 1 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖−1), (𝑦𝑖 , 𝑦𝑖+1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 1 < 𝑖 < 𝑛 

(𝑥𝑖 , 𝑥𝑖−1), (𝑥𝑖 , 𝑧), (𝑦𝑖 , 𝑦𝑖−1), (𝑦𝑖 , 𝑧) ∈ 𝐸(𝐵𝐹(𝑛)), for 𝑖 = 𝑛 

This shows that 𝜎(𝑧) ≠ 𝜎(𝑥0), 𝜎(𝑧) ≠ 𝜎(𝑦0), 𝜎(𝑧) ≠ 𝜎(𝑥𝑖) , and 𝜎(𝑧) ≠ 𝜎(𝑦𝑖).  Based on 

Definition 1, for 𝑥 , 𝑦  are two adjacent vertices in 𝐵𝐹(𝑛) , if 𝜎(𝑥) ≠ 𝜎(𝑦)  in ℤ3 , then 𝑐  is a 

modular 3-coloring such that 𝑚𝑐(𝐵𝐹(𝑛)) =  3. 

 

D. CONCLUSION AND SUGGESTIONS 

Building upon the results of the modular coloring performed on comb graph 𝐶𝑏𝑛, lintang 

graph 𝐿𝑛 , and butterfly graph 𝐵𝐹(𝑛) . The modular chromatic number of the comb graph 

𝑚𝑐(𝐶𝑏𝑛) = 2  for 𝑛 ≥ 2 , the lintang graph 𝑚𝑐(𝐿𝑛) = 2  for 𝑛 ≥ 1 , and the butterfly graph 

𝑚𝑐(𝐵𝐹(𝑛)) = 3  for 𝑛 ≥ 2 . Modular coloring can be done with various 𝑘  values, but to 

determine the modular chromatic number, the minimum 𝑘 value must be used. This is because 

the minimum 𝑘 value is the most efficient solution for applying modular coloring. This research 

also shows that for some graphs, such as the 𝐵𝐹(𝑛) butterfly graph, which has a cycle graph 𝐶3 

in its structure, the modular chromatic number will be 𝑚𝑐 ≥ 3. In this study, one of the graphs 

used is the 𝐵𝐹(𝑛) butterfly graph with equal wing sizes in the butterfly graph. Readers who are 

interested in developing this research can discuss modular coloring on 𝐵𝐹(𝑚, 𝑛)  butterfly 

graphs with different butterfly wing sizes. 
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