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essential to support operational decision-making and reduce the likelihood of
accidents. This study aims to compare and evaluate the performance of two
bidirectional deep learning models, BiLSTM and BiGRU, in predicting aircraft
visibility using historical meteorological data from BMKG Juanda Sidoarjo. The

g?c’:\:f)tr\(}iss:ibility novelty of this research lies in applying and comparing bidirectional recurrent
Prediction; architectures for visibility prediction, an approach rarely explored in aviation
BiGRU; meteorology, to assess their capability in capturing temporal dependencies within
BiLSTM; time-series visibility patterns. Both models were trained using hyperparameter
Deep Learning; tuning, with the best configuration obtained from a 24-hour input window, batch
Time Series. size of 32, 64 neurons, a dropout rate of 0.1, and 100-200 epochs. The dataset was

divided into training and testing sets (80:20), and model performance was
evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
Mean Absolute Percentage Error (MAPE) to assess both predictive accuracy and
computational efficiency. The results indicate that while BiLSTM achieved slightly
higher accuracy, BiGRU demonstrated superior overall efficiency, obtaining
competitive error metrics (MSE = 1.50 x 108, RMSE = 1,223.5, MAPE = 19.35%)
compared to BiLSTM (MSE = 1.58 x 10%, RMSE = 1,258.1, MAPE = 19.50%). BiGRU’s
advantage lies in its simpler structure and faster computation, which reduce
training complexity without sacrificing forecast accuracy. Overall, this research
contributes to the development of efficient bidirectional time-series models for
aviation meteorology, offering a practical framework for real-time visibility
forecasting in computationally limited environments. The balance between
accuracy, speed, and model simplicity makes BiGRU a more scalable and applicable
choice for enhancing flight safety operations.
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A. INTRODUCTION

Aviation safety remains one of the most critical priorities in modern air transportation,
where environmental factors such as fog, heavy rain, and storms significantly affect flight
operations (Wang et al., 2024). A serious threat to safety is poor weather conditions, such as
dense fog, heavy rain, or storms, which can significantly reduce aircraft visibility (AlBesher &
AlMusallam, 2023). This is a challenge for pilots, especially when taking off or landing, as it
increases the possibility of accidents and reduces passengers' comfort and airline service
confidence (Adukwu et al., 2024). Such accidents were witnessed in the media where five flights
at Juanda Airport had to divert to Ngurah Rai Airport, Bali, due to poor visibility caused by bad
weather (DetikCom, 2024). The worst possible visibility accepted for air traffic operation in
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aviation is usually 5 to 8 km. Less than this, there is a significantly increased risk of takeoff or
landing. This concurs with ICAO Visual Meteorological Conditions (VMC) minima, which specify
a minimum of 5 km of flight visibility at or below 10,000 ft, and 8 km above 10,000 ft. Less than
this, there is a significantly increased risk of takeoff or landing (Skybrary, n.d.). Thus,
precautionary measures such as routed diversion or flight delay are usually implemented to
prevent danger. These measures are implemented for the safety of passengers, and when
regular visibility is restored, delayed or diverted flights are safe to land. As a result, aircraft low
visibility is a critical challenge that must be adequately foreseen by all the players in the aviation
industry (Akintunde et al., 2025).

Aircraft visibility prediction is an effort to minimize the negative impact of visibility caused
by bad weather, which not only prevents accidents but also maintains business efficiency in the
aviation industry (C.-J. Chen et al.,, 2023). Aircraft visibility prediction can be done using
methods that utilize historical visibility data as input for past visibility observations (Singh et
al,, 2024). Deep learning is increasingly being used in weather research because it can handle
complex, nonlinear, and dynamic data patterns more effectively than conventional approaches
in this case, deep learning models such as Bidirectional Long Short-Term Memory (BiLSTM)
and Bidirectional Gated Recurrent Unit (BiGRU) have been widely used to build time series
models. These bidirectional models can learn past and future dependencies simultaneously,
resulting in higher prediction efficiency compared to simple unidirectional models (Unlu &
Pefia, 2025).

BiGRU can learn bidirectional temporal patterns in rainfall data in Bandung with faster
computation than the more complex BiLSTM. In addition, BiGRU is also reliable in solving the
vanishing gradient problem Another study found that the CNN-LSTM model can outperform
conventional deep learning methods such as CNN, GRU, LSTM, and BiLSTM in predicting
cryptocurrency movements. However, the CNN-LSTM architecture is unidirectional, so it
cannot capture temporal dependency patterns. This limitation creates a research gap that can
be addressed by applying BiLSTM and BiGRU, which can learn future and past sequence
patterns, thereby improving model performance (Shankar & Sahana, 2024). The conclusion
demonstrates the direction in which algorithm selection should be set, depending on the type
of dataset, where volatile data is best represented by BiGRU, and complex pattern stable data
is best described by BiLSTM (Shaikh & Ramadass, 2024).

Although BiGRU and BiLSTM have been widely applied in various time series forecasting
domains, their specific use for aircraft visibility prediction remains very limited. Moreover, few
studies have directly compared the performance of these two bidirectional models in the
context of aviation safety, where visibility is a crucial operational factor. This research
addresses that gap by developing and evaluating both models using historical meteorological
data from BMKG Juanda Sidoarjo to determine which architecture performs more effectively in
predicting aircraft visibility. Scientifically, this study contributes to a deeper understanding of
how bidirectional deep learning architectures, BiLSTM and BiGRU, handle nonlinear temporal
patterns in meteorological time series data. By directly comparing their performance, this
research provides empirical evidence on how these two models handle complex atmospheric
patterns. Practically, the findings of this study are expected to serve as a foundation for
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developing more reliable early-warning and decision-support systems that can enhance flight
safety under low-visibility conditions.

B. METHODS
1. Preprocessing Data

The preprocessing stage begins with linear interpolation, which is applied to handle missing
visibility records and ensure data continuity. This technique assumes that short-term changes
in visibility follow a smooth temporal transition, which is a reasonable approximation for
meteorological variables that typically vary gradually over time (Wang, 2025). Then,
MinMaxScaler normalization is performed to rescale all variables into the range of 0-1. This
step ensures uniform numerical magnitude among input features and prevents any single
variable from dominating the training process, improving model convergence stability (Raju et
al, 2020). At the time-series windowing stage, a 24-hour window was selected because
meteorological factors such as temperature, humidity, and visibility generally exhibit daily
cyclic patterns. Capturing one full diurnal cycle allows the model to learn dependencies
between day and night visibility variations effectively (Shi et al., 2022). Finally, the dataset is
divided into training and testing subsets using an 80:20 ratio. This ratio is commonly adopted
in time-series forecasting to maintain a balance between model learning capacity and
evaluation reliability. Cross-validation was not implemented in this study to save
computational time, as it requires multiple training iterations that are computationally
expensive for deep learning models. Since the dataset exhibits a continuous temporal sequence
without random sampling, a single 80:20 split was deemed sufficient to represent the
generalization ability of the models without iterative resampling. The research process is
described in Figure 1.
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Figure 1. Research Method Flowchart
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2. Bidirectional Gated Recurrent Unit (BiGRU)

The Bidirectional Gated Recurrent Unit (BiGRU) is a type of Recurrent Neural Network
(RNN) designed to learn temporal dependencies from sequential data in both forward and
backward directions (S. Wang et al., 2022). It consists of two GRU layers that process the same
sequence in opposite directions and then combine their hidden states in the output layer. This
bidirectional structure enables the model to capture both preceding and succeeding contextual
information within a time sequence, resulting in a more comprehensive temporal
representation (Li et al.,, 2023). For meteorological data such as visibility, humidity, and
temperature, where patterns often repeat within daily or seasonal cycles, BiGRU is well suited
to identify these dynamic relationships. Its dual-directional learning helps recognize visibility
fluctuations more effectively by considering the influence of past and future conditions
simultaneously. Figure 2 illustrates the BiGRU architecture used in this study, which integrates
two GRU layers running in opposite directions before merging into a fully connected output
layer for visibility prediction.

Layer

Layer

3. Bidirectional Long Short-Term Memory (BiLSTM)

The Bidirectional Long Short-Term Memory (BiLSTM) model extends the standard LSTM
architecture by enabling learning in both forward and backward directions. BiLSTM employs
an internal memory mechanism that helps preserve long-term dependencies while controlling
the flow of information through three gates, input, forget, and output. This structure enables
the model to effectively capture long-term and short-term dependencies within sequential data.
(Tyas, 2024). In the context of visibility forecasting, BILSTM provides a deeper temporal
representation by analyzing both past and future meteorological trends simultaneously. This
ability to capture dual-directional temporal relationships makes BiLSTM particularly powerful
for modeling atmospheric dynamics that influence visibility fluctuations. As illustrated in
Figure 3, BiLSTM combines two LSTM layers one reading the input sequence forward and the
other backward whose outputs are merged to form the final prediction layer.
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Backward |
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4. Denormalization Process and Model Evaluation

The best model is attained by validation against the test dataset, and then a denormalization
stage using the reverse process of the initial normalization to transform the data back to its
original level, so that the prediction outcomes can be meaningfully interpreted (Qin etal., 2024).
The prediction begins with an extensive testing of the selected model to forecast visibility for
the next seven days. This is performed based on three critical metrics: Mean Squared Error
(MSE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These
are employed because they give the complete picture of the model's performance regarding
absolute error, prediction deviation, and relative error. The combination of MSE, RMSE, and
MAPE enables a comparison between the magnitude of errors and the proportion of error to
actual values, such that the most accurate and highest quality model is the smallest MSE, RMSE,
and MAPE. These three metrics will serve as benchmarks in this study, with the following
formulas (Li, 2023), as shown in Table 1.

Table 1. Evaluation Metric Formula for Prediction Models
MSE RMSE MAPE

I N2 1 A I Y=y
:—z i —9) =\/;Zi=1(3’z—%')2 =—Z —|><100%
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The interpretation of the MAPE value can be classified based on its range, as shown in Table
2, which provides a qualitative guide to the model's forecasting accuracy.

Table 2. MAPE Value Range (Montafio Moreno et al., 2013)

Range MAPE <10% 10% - 20% 20% - 50% >50%
Very Accurate Good Fairly Good Inaccurate
Forecast Forecast Forecast Forecast

Interpretation
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5. Comparative Statistical Analysis of Models
To compare the performance of the BiGRU and BiLSTM models, a series of statistical tests
were conducted on the prediction results obtained from both models. The analysis began with
a normality test using the Shapiro-Wilk test to verify whether the error data from each model
followed a normal distribution. If the test produced a significance value (Sig.) greater than 0.05,
the data were considered normally distributed. Subsequently, a homogeneity of variance test
was performed using Levene's test to assess whether the variances between the two models
were statistically equal. The data were regarded as homogeneous if the Levene's test
significance value exceeded 0.05. If both assumptions normality and homogeneity were
satisfied, a paired sample t-test was then applied to determine whether there was a statistically
significant difference between the performance of the BiGRU and BiLSTM models. The test was
conducted at a significance level of a = 0.05 with degrees of freedom (df) = n - 1, where n
represents the number of trials. The decision criteria of t-test were defined as follows:
a. Ifthe significance value (Sig.) < 0.05, the difference in model performance is statistically
significant, indicating that one model outperforms the other.
b. If the significance value (Sig.) = 0.05, the difference is not statistically significant,
implying that both models perform comparably.

6. Visualization of Prediction Results

The model with the best evaluation performance is applied to predict the aircraft visibility
over the next seven days, using the most recent data to ensure the relevance of the predictions.
The prediction results are then visualized alongside the actual data, including training and
testing data, to facilitate comparative analysis and allow for a visual assessment of the model's
prediction accuracy.

C. RESULT AND DISCUSSION
1. Data and Preprocessing

The research data was collected hourly over one year, from January 1, 2024, at 01:00 to
January 1, 2025, at 00:00, resulting in 8,784 data points. Each entry records the observation
time and the visibility value in meters, as shown in Figure 4.



1486 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1480-1494

The data set has 61 data points with missing values. Linear interpolation fills in missing
values by drawing a straight line between the two closest data points, with the results shown
in Figure 4b (J. Wang, 2025). Next, MinMaxScaler normalisation is performed, with the results
presented in Figure 4c. The results of time series windowing with 24 inputs are shown in Figure
5a, and the results of 80:20 data division are shown in Figure 5b. Next, the data from windowing
and the division of the training and testing sets are formulated as model inputs for the modeling
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2. Model Configuration and Evaluation

a. Training Model
Both models, the BiGRU and BiLSTM, process data from the forward and backward
directions. Each model uses a single bidirectional layer with 64 units and a dropout rate
of 0.1 to reduce overfitting, followed by a dense layer with 32 neurons using the ReLU
activation function. Training is carried out with batch sizes of 32 and 64, optimized using
the Adam optimizer with a learning rate of 0.001, and monitored with EarlyStopping
(patience = 10). Model performance is evaluated across different epochs (50, 100, 150,
and 200) and historical data windows of 1, 24, and 48 hours to analyze how temporal
context influences visibility prediction.

b. Denormalization Process
After obtaining the best model through testing on the testing data, the denormalization
process is performed using the inverse method of the initial normalization to return the
data to its original scale, allowing the predicted results to be interpreted in their actual
context (Qin et al.,, 2024). The denormalized output data is shown at Table 3.

Table 3. Denormalized Actual Y Data

Date Denormalized Data
1/1/2024 5000
1/1/2024 10000
1/1/2024 10000
12/31/2024 8000
12/31/2024 8000
1/1/2025 8000

c. Implementation of the BIGRU Model

After denormalization, the model is trained with the test data based on evaluation
metrics set as MSE, RMSE, and MAPE for each trial during the epoch number. The best
model is selected by employing the minimum MSE, RMSE, and MAPE values obtained
from all experiments, and the result is used to store the best model as well as the scaler
used during training. In this study, the visibility of aircraft will be accurately predicted,
and it will be determined whether BiGRU or BIiLSTM is the best approach. Before
obtaining the optimal results for evaluation, there was a hyperparameter tuning process,
as evident in Table 4.

Table 4. Hyperparameter Tuning Results for BIGRU Model

Dropout 0.1
b B N 0 MSE RMSE MAPE Time
50 1.77x10¢ 1330.4 19.998 31s
100 1.78x10¢ 13349 20.65 26s
150 1.78x10¢ 1333 20.064 30s
200 1.77x106 1331 20.484 35s
50 1.58x106 1255.5 19907 258s
24 32 64 100 1.50x106 1223.5 19.346  265s
150 1.61x106 1267.2 20.052  283s

1 32 64
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Dropout 0.1
b B N 0 MSE RMSE MAPE Time
200 1.59x106 1259.1 19459 273s
50 1.89x106 1375 21.077  136s
100 1.88x106 1369.4 21.273  145s
150 190x10¢ 1380.1 21.106 176s
200 1.88x10¢ 1372.3 21.292 183s

48 32 64

The training process showed that increasing Historical Data, Batch Size, Neuron, and
Epoch values, and decreasing the Dropout value, did not necessarily improve
performance or cut down computation. Therefore, it is necessary to choose the proper
set of parameters. The best combination of Historical Data (D) time series windowing
for 1 hour, 24 hours, and 48 hours with other parameters such as Batch Size (B), Neuron
(N), Epoch (0), and Dropout from the grey-lined row (D=24, B=32, N=64, 0=100,
Dropout=0.1) provided evaluation metrics of MSE 1.50 x 106, RMSE 1223.5, and MAPE
19.346 with a computation efficiency of 265s. This is the optimal compromise between
prediction accuracy and computational complexity and, therefore, is the optimal setting
for calibration of the BiGRU model.
d. Implementation of the BiLSTM Model

The BILSTM model was also executed to verify how the performance of BiLSTM
compares with the BiGRU model with the same batch of hyperparameters. The results
of hyperparameter tuning of the BILSTM model are presented in Table 5, along with
adjustments in time series windowing configuration of Historical Data (D) for 1 h, 24 h,
and 48 h, among other parameters such as Batch Size (B), Neuron (N), Epoch (0), and
Dropout, as shown in Table 5.

Table 5. Hyperparameter Tuning Results for BiLSTM Model

Dropout 0.1
b B N 0 MSE RMSE MAPE Time
50 1.85x10¢ 1360.5 20.295  23s
100 1.80x106 1340.6 20.602  50s

132 64 150 1.84x105 1358.1 20.335  20s
200 1.79x10¢  1339.7 20.889  42s
50 1.60x106 1264.5 19.655  294s
6
24 32 64 100 1.58x10 1258.1 19.705  196s

150 1.59x108  1262.5 19.81 234s

200 1.58x106¢ 1258.1 19.504  264s

50 1.98x106 14085 22466  154s

48 32 64 100 199x106¢ 1410.2 21.58 289s
150 1.82x106 1348.8 21.282  189s

200 195x10% 1396.8 21.548  205s

Alesser Dropout learning process proved that a greater Batch Size, Neuron, and Epoch,
along with a lower dropout rate, were not necessarily the best model. The optimal
parameters and prediction objective were the best approach. The configuration beneath
the grey-colored row (D=24, B=32, N=64, 0=200, Dropout=0.1) yielded values of MSE
1.58 x 1076, RMSE 1,258.1, and MAPE 19.504, with an excellent computation time of
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264 seconds. The configuration offers an excellent balance between prediction
performance and computational time, making it the optimal choice for hyperparameter
tuning of the BiLSTM model.

Comparison of BiGRU and BiLSTM Models

The best results of the hyperparameter tuning for the BiGRU and BiLSTM models are
shown in the following Table 4 and Table 5.

Table 6. Best Model Comparison Results

Dropout 0.1

b B N 0 Model = MSE RMSE MAPE  TIME
50 BiGRU 1.58 1255.5 19.907 258s
50 BILSTM 1.60 1264.5 19.655 294s
100 BiGRU 1.50 1223.5 19.346 265s

24 32 64 100 BiLSTM 1.58 1258.1 19.705 196s
150 BiGRU 1.61 1267.2  20.052 283s
150 BIiLSTM 1.59 1262.5 19.810 234s
200 BiGRU 1.59 1259.1  19.459 273s
200 BiLSTM 1.58 1258.1 19.504 264s

In the hyperparameter tuning experiment with the following settings (Historical Data
(D) = 24, Batch Size (B) = 32, Neuron (N) = 64, Dropout = 0.1), the BiGRU and BiLSTM
models exhibited their optimal performance under different epoch settings. The BiGRU
model yielded an MSE of 1.50 x 106, an RMSE of 1223.5, and a MAPE of 19.346, with a
computation time of 265s at 100 epochs. The BiLSTM model, however, yielded an MSE
of 1.58 x 106, an RMSE of 1258.1, and a MAPE of 19.504, with a computation time of 264s
at 200 epochs. Comparing these results, BiGRU outperformed BiLSTM in all the
evaluation measures, providing lower MSE, RMSE, and MAPE values while consuming
nearly the same computation time. Both models’ MAPE values fall in the Good
Forecasting class, although BiGRU is more precise and computationally efficient in
predicting visibility.

Comparative statistical analysis of models

Based on the results of twelve experimental trials, the BIGRU model achieved a mean
value of 1319.2833 with a standard deviation of 54.2685. In contrast, the BiLSTM model
obtained a higher mean of 1333.8667 and a standard deviation of 59.0397. The smaller
mean value of BiGRU indicates that it produced lower prediction errors compared to
BiLSTM. Therefore, from a descriptive statistical perspective, BIGRU demonstrates
better predictive performance and greater stability.

The Shapiro-Wilk normality test results for the RMSE values of both models show
significance values of 0.085 for BiGRU and 0.054 for BiLSTM. Both significance values
are around the threshold of 0.05, so it can be concluded that the data is normally
distributed and meets the normality assumption. This indicates that the residuals from
both models were usually distributed. Furthermore, the Levene’s test for homogeneity
of variance yielded a significance value of 0.771, which is greater than 0.05, confirming
that the two datasets have homogeneous variances.
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Since both assumptions of normality and homogeneity were satisfied, a paired
sample t-test was performed to assess whether there was a significant difference
between the two models. The test produced a t-statistic value of -2.428 and a t-
critical value of 2.201 at a 5% significance level, with a p-value of 0.034. Because |t
hitung| > t table and p < 0.05, the null hypothesis (Hy) is rejected, indicating a
statistically significant difference between the BiGRU and BiLSTM models. In
conclusion, the BiGRU model achieved lower average prediction errors and more
consistent results, confirming that it outperforms BiLSTM in terms of predictive
accuracy and model stability. The results of the normality, homogeneity, and paired
t-tests are summarized in Table 7.

Table 7. Statistical Analysis for Comparing Model Performance

Type of Test Sig. (p-value) Conclusion
Normality Test BiGRU =0.085 The data are normally distributed
(Shapiro-Wilk) BiLSTM= 0.054
Homogeneity Test 0.771 The variances of both models are
(Levene’s Test) homogeneous
Paired Sample t-Test 0.035 There is a significant difference; BiGRU

performs better

The comparison plot also verifies this outcome, with the BiGRU prediction line closely
following the actual trend of visibility, particularly in sequences with oscillating
values. Although small fluctuations occur in highly low visibility values, BiGRU
exhibits closer agreement with real data than BiLSTM. All required outcomes thus
confirm that BiGRU is more accurate and computationally less expensive, making it
the best suited model for aircraft visibility prediction in this study, as shown in Figure
6.

Comparison of Actual and Predicted Values of BiGRU Model
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Figure 6. Actual and Predicted Values of the Best Model

To further validate the results of this study, a comparison was conducted with
previous research related to airport visibility prediction in Indonesia. Both studies
applied machine learning approaches using meteorological parameters. However,
they differ in modelling techniques and data sources. The comparison aims to
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highlight how the present study aligns with or improves upon earlier works in terms
of prediction accuracy and methodological approach, as shown in Table 8.

Table 8. Comparison of Previous Studies on Aircraft Visibility Prediction

Previous Research Location Method RMSE
Artificial Neural
(Moonlight et al., 2023) ‘]ql;:ngi Network 677.6
p (Backpropagation)
(Kharisma et al., 2025) Sofllj;:o_ Random Forest
Airport Regressor 772.3
This study Juanda BiGRU 1,223.5
Airport

Based on the comparison, the Backpropagation Neural Network used by Moonlight
et al. (2023) at Juanda Airport achieved an RMSE of 677.6, while the Random Forest
Regressor developed by Kharisma et al. (2025) for Soekarno-Hatta Airport obtained
an RMSE of 772.3. Despite differences in data scale and evaluation units, both models
demonstrated strong predictive performance in visibility forecasting. This
comparison reinforces that applying data-driven machine learning models can
significantly enhance aviation meteorology. The present study’s BIGRU model adopts
a bidirectional deep learning approach for visibility prediction at Juanda Airport.
Although the RMSE value (1,223.5) is higher than those obtained in previous studies,
the model demonstrates the applicability of deep sequential architectures in
capturing temporal patterns in meteorological data and provides a basis for further
model refinement.

Prediction Process with the Best Model

The next step involves using the best model to predict 168 data points, equivalent to
7 days, from January 1, 2025, at 00:00 to January 7, 2025, at 23:00. The prediction
results are shown in Figure 6.

10000 BiLSTM Prediction
BiGRU Prediction

9000

8000

Visibility

7000

6000

5000

01-Jan 02-Jan 03-Jan 04-Jan 05-Jan 06-Jan 07-Jan 08-Jan
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

Date and Time

Figure 6. Prediction Results
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As can be observed in Figure 6, there are noticeable dissimilarities in the patterns,
ranges, and temporal responses of the BILSTM and BiGRU model predictions. Overall,
both models follow the diel cycle of visibility, with higher values during the daytime and
steep decreases at nighttime. The BiGRU model predicts visibility in the range of
approximately 6000-10000 meters, while the BiLSTM model predicts a comparatively
wider range of approximately 5200-10000 meters, indicating BiLSTM accounts for
more extreme variations. BiLSTM is also sensitive to short-term dynamics, particularly
during the morning transition, when visibility rises abruptly due to surface warming and
fog evaporation.

At night, BiLSTM showed a sharper decline in visibility than BiGRU, in line with findings
related to the effects of humidity and fog (Boutle et al., 2022). The most significant
difference occurred on 1 January 2025 at 03:00, when BiLSTM predicted a decline of
more than 120 metres compared to BiGRU. During the day, both models predicted
visibility above 9,000 metres, and during the seven-day observation period, most of the
predictions exceeded 6,000 metres, meeting international safety standards. BiLSTM and
BiGRU demonstrate more accurate model performance with MAPE of 19.50% and
19.35%, respectively, compared to the RNN and U?Net models (He et al., 2024) and (J.
Chen etal,, 2023).

BiGRU excels in its simpler structure, which utilizes only two gates (reset and update),
compared to BiLSTM, which employs three gates (input, forget, and output). The simpler
structure reduces computational overhead, lowers training time, and avoids the
phenomenon of overfitting without affecting the capacity to learn temporal
dependencies efficiently. The efficiency of BiGRU renders it more suitable for real-time
or large-scale prediction tasks, where resource optimization and speed are essential.
While BiLSTM can grasp complex temporal patterns, BiGRU achieves nearly the same, if
not better, predictive performance with lower computational complexity and less
complex structure. Overall, BiGRU is superior due to its stability, lower error, and lighter
computational requirements, making it more efficient for aircraft visibility prediction.

D. CONCLUSION AND SUGGESTIONS

Both BiGRU and BiLSTM models demonstrated reliable performance in predicting aircraft
visibility, with MAPE values around 19%. However, BiGRU achieved better results with lower
error metrics (MSE = 1.50 x 10%; RMSE = 1,223.5; MAPE = 19.34%) compared to BiLSTM (MSE
=1.58 x 10% RMSE = 1,258.1; MAPE = 19.50%), while also requiring less computational time.
The superior performance of BiGRU can be attributed to its bidirectional recurrent architecture
and simplified gating mechanism, which consists of only two gates: reset and update. This
design allows the model to efficiently capture temporal dependencies from both past and future
sequences while reducing computational overhead and minimizing the vanishing gradient
problem. These structural advantages enable BiGRU to produce accurate predictions with
greater stability and faster convergence compared to BiLSTM. From a practical standpoint, this
finding holds significant importance for aviation safety. Accurate and timely visibility
forecasting enables air traffic controllers and pilots to make informed operational decisions,
thereby minimizing the risks of delays, diversions, and potential flight accidents under low-
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visibility conditions. From a scientific perspective, the study contributes to meteorological
forecasting research by providing empirical evidence of the effectiveness of bidirectional
recurrent networks, particularly BiGRU.

For future research, it is recommended to move beyond parameter tuning and explore
broader and more impactful extensions. These include developing multivariate forecasting
models that integrate additional meteorological variables such as humidity, temperature, and
wind speed to enhance predictive robustness. Moreover, the application of time series cross-
validation is strongly encouraged to improve the reliability of model evaluation and ensure a
more accurate representation of temporal dependencies in sequential data. Implementing this
approach would prevent overfitting and yield more generalizable forecasting results.
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