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 Severe weather conditions such as fog and heavy precipitation pose significant 
threats to aviation safety. Accurate prediction of aircraft visibility is therefore 
essential to support operational decision-making and reduce the likelihood of 
accidents. This study aims to compare and evaluate the performance of two 
bidirectional deep learning models, BiLSTM and BiGRU, in predicting aircraft 
visibility using historical meteorological data from BMKG Juanda Sidoarjo. The 
novelty of this research lies in applying and comparing bidirectional recurrent 
architectures for visibility prediction, an approach rarely explored in aviation 
meteorology, to assess their capability in capturing temporal dependencies within 
time-series visibility patterns. Both models were trained using hyperparameter 
tuning, with the best configuration obtained from a 24-hour input window, batch 
size of 32, 64 neurons, a dropout rate of 0.1, and 100–200 epochs. The dataset was 
divided into training and testing sets (80:20), and model performance was 
evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
Mean Absolute Percentage Error (MAPE) to assess both predictive accuracy and 
computational efficiency. The results indicate that while BiLSTM achieved slightly 
higher accuracy, BiGRU demonstrated superior overall efficiency, obtaining 
competitive error metrics (MSE = 1.50 × 10⁶, RMSE = 1,223.5, MAPE = 19.35%) 
compared to BiLSTM (MSE = 1.58 × 10⁶, RMSE = 1,258.1, MAPE = 19.50%). BiGRU’s 
advantage lies in its simpler structure and faster computation, which reduce 
training complexity without sacrificing forecast accuracy. Overall, this research 
contributes to the development of efficient bidirectional time-series models for 
aviation meteorology, offering a practical framework for real-time visibility 
forecasting in computationally limited environments. The balance between 
accuracy, speed, and model simplicity makes BiGRU a more scalable and applicable 
choice for enhancing flight safety operations. 
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A. INTRODUCTION  

Aviation safety remains one of the most critical priorities in modern air transportation, 

where environmental factors such as fog, heavy rain, and storms significantly affect flight 

operations (Wang et al., 2024). A serious threat to safety is poor weather conditions, such as 

dense fog, heavy rain, or storms, which can significantly reduce aircraft visibility (AlBesher & 

AlMusallam, 2023). This is a challenge for pilots, especially when taking off or landing, as it 

increases the possibility of accidents and reduces passengers' comfort and airline service 

confidence (Adukwu et al., 2024). Such accidents were witnessed in the media where five flights 

at Juanda Airport had to divert to Ngurah Rai Airport, Bali, due to poor visibility caused by bad 

weather (DetikCom, 2024). The worst possible visibility accepted for air traffic operation in 

http://journal.ummat.ac.id/index.php/jtam
mailto:nuris.ulinnuha@uinsa.ac.id
https://doi.org/10.31764/jtam.v10i1.34698


 Nurissaidah Ulinnuha, Analysis Comparison of BiLSTM and...    1481 

 

 

aviation is usually 5 to 8 km. Less than this, there is a significantly increased risk of takeoff or 

landing. This concurs with ICAO Visual Meteorological Conditions (VMC) minima, which specify 

a minimum of 5 km of flight visibility at or below 10,000 ft, and 8 km above 10,000 ft. Less than 

this, there is a significantly increased risk of takeoff or landing (Skybrary, n.d.). Thus, 

precautionary measures such as routed diversion or flight delay are usually implemented to 

prevent danger. These measures are implemented for the safety of passengers, and when 

regular visibility is restored, delayed or diverted flights are safe to land. As a result, aircraft low 

visibility is a critical challenge that must be adequately foreseen by all the players in the aviation 

industry (Akintunde et al., 2025). 

Aircraft visibility prediction is an effort to minimize the negative impact of visibility caused 

by bad weather, which not only prevents accidents but also maintains business efficiency in the 

aviation industry (C.-J. Chen et al., 2023). Aircraft visibility prediction can be done using 

methods that utilize historical visibility data as input for past visibility observations (Singh et 

al., 2024). Deep learning is increasingly being used in weather research because it can handle 

complex, nonlinear, and dynamic data patterns more effectively than conventional approaches 

in this case, deep learning models such as Bidirectional Long Short-Term Memory (BiLSTM) 

and Bidirectional Gated Recurrent Unit (BiGRU) have been widely used to build time series 

models. These bidirectional models can learn past and future dependencies simultaneously, 

resulting in higher prediction efficiency compared to simple unidirectional models (Unlu & 

Peña, 2025). 

BiGRU can learn bidirectional temporal patterns in rainfall data in Bandung with faster 

computation than the more complex BiLSTM. In addition, BiGRU is also reliable in solving the 

vanishing gradient problem Another study found that the CNN-LSTM model can outperform 

conventional deep learning methods such as CNN, GRU, LSTM, and BiLSTM in predicting 

cryptocurrency movements. However, the CNN-LSTM architecture is unidirectional, so it 

cannot capture temporal dependency patterns. This limitation creates a research gap that can 

be addressed by applying BiLSTM and BiGRU, which can learn future and past sequence 

patterns, thereby improving model performance  (Shankar & Sahana, 2024). The conclusion 

demonstrates the direction in which algorithm selection should be set, depending on the type 

of dataset, where volatile data is best represented by BiGRU, and complex pattern stable data 

is best described by BiLSTM (Shaikh & Ramadass, 2024).  

Although BiGRU and BiLSTM have been widely applied in various time series forecasting 

domains, their specific use for aircraft visibility prediction remains very limited. Moreover, few 

studies have directly compared the performance of these two bidirectional models in the 

context of aviation safety, where visibility is a crucial operational factor. This research 

addresses that gap by developing and evaluating both models using historical meteorological 

data from BMKG Juanda Sidoarjo to determine which architecture performs more effectively in 

predicting aircraft visibility. Scientifically, this study contributes to a deeper understanding of 

how bidirectional deep learning architectures, BiLSTM and BiGRU, handle nonlinear temporal 

patterns in meteorological time series data. By directly comparing their performance, this 

research provides empirical evidence on how these two models handle complex atmospheric 

patterns. Practically, the findings of this study are expected to serve as a foundation for 



1482  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1480-1494 

 

 

developing more reliable early-warning and decision-support systems that can enhance flight 

safety under low-visibility conditions. 

 

B. METHODS 

1. Preprocessing Data 

The preprocessing stage begins with linear interpolation, which is applied to handle missing 

visibility records and ensure data continuity. This technique assumes that short-term changes 

in visibility follow a smooth temporal transition, which is a reasonable approximation for 

meteorological variables that typically vary gradually over time (Wang, 2025). Then, 

MinMaxScaler normalization is performed to rescale all variables into the range of 0–1. This 

step ensures uniform numerical magnitude among input features and prevents any single 

variable from dominating the training process, improving model convergence stability (Raju et 

al., 2020). At the time-series windowing stage, a 24-hour window was selected because 

meteorological factors such as temperature, humidity, and visibility generally exhibit daily 

cyclic patterns. Capturing one full diurnal cycle allows the model to learn dependencies 

between day and night visibility variations effectively (Shi et al., 2022).  Finally, the dataset is 

divided into training and testing subsets using an 80:20 ratio. This ratio is commonly adopted 

in time-series forecasting to maintain a balance between model learning capacity and 

evaluation reliability. Cross-validation was not implemented in this study to save 

computational time, as it requires multiple training iterations that are computationally 

expensive for deep learning models. Since the dataset exhibits a continuous temporal sequence 

without random sampling, a single 80:20 split was deemed sufficient to represent the 

generalization ability of the models without iterative resampling. The research process is 

described in Figure 1. 

 

 
Figure 1. Research Method Flowchart 
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2. Bidirectional Gated Recurrent Unit (BiGRU)  

The Bidirectional Gated Recurrent Unit (BiGRU) is a type of Recurrent Neural Network 

(RNN) designed to learn temporal dependencies from sequential data in both forward and 

backward directions (S. Wang et al., 2022). It consists of two GRU layers that process the same 

sequence in opposite directions and then combine their hidden states in the output layer. This 

bidirectional structure enables the model to capture both preceding and succeeding contextual 

information within a time sequence, resulting in a more comprehensive temporal 

representation (Li et al., 2023). For meteorological data such as visibility, humidity, and 

temperature, where patterns often repeat within daily or seasonal cycles, BiGRU is well suited 

to identify these dynamic relationships. Its dual-directional learning helps recognize visibility 

fluctuations more effectively by considering the influence of past and future conditions 

simultaneously. Figure 2 illustrates the BiGRU architecture used in this study, which integrates 

two GRU layers running in opposite directions before merging into a fully connected output 

layer for visibility prediction. 

 

 
Figure 2. The Architecture of the BiGRU Model (Pranida & Kurniawardhani, 2022) 

 

3. Bidirectional Long Short-Term Memory (BiLSTM) 

The Bidirectional Long Short-Term Memory (BiLSTM) model extends the standard LSTM 

architecture by enabling learning in both forward and backward directions. BiLSTM employs 

an internal memory mechanism that helps preserve long-term dependencies while controlling 

the flow of information through three gates, input, forget, and output. This structure enables 

the model to effectively capture long-term and short-term dependencies within sequential data. 

(Tyas, 2024). In the context of visibility forecasting, BiLSTM provides a deeper temporal 

representation by analyzing both past and future meteorological trends simultaneously. This 

ability to capture dual-directional temporal relationships makes BiLSTM particularly powerful 

for modeling atmospheric dynamics that influence visibility fluctuations. As illustrated in 

Figure 3, BiLSTM combines two LSTM layers one reading the input sequence forward and the 

other backward whose outputs are merged to form the final prediction layer. 

. 
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Figure 3.  The Architecture of the BiLSTM Model  (Pranida & Kurniawardhani, 2022) 

 

4. Denormalization Process and Model Evaluation 

The best model is attained by validation against the test dataset, and then a denormalization 

stage using the reverse process of the initial normalization to transform the data back to its 

original level, so that the prediction outcomes can be meaningfully interpreted (Qin et al., 2024). 

The prediction begins with an extensive testing of the selected model to forecast visibility for 

the next seven days. This is performed based on three critical metrics: Mean Squared Error 

(MSE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These 

are employed because they give the complete picture of the model's performance regarding 

absolute error, prediction deviation, and relative error. The combination of MSE, RMSE, and 

MAPE enables a comparison between the magnitude of errors and the proportion of error to 

actual values, such that the most accurate and highest quality model is the smallest MSE, RMSE, 

and MAPE. These three metrics will serve as benchmarks in this study, with the following 

formulas (Li, 2023), as shown in Table 1. 

 

Table 1. Evaluation Metric Formula for Prediction Models 

MSE RMSE MAPE 
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The interpretation of the MAPE value can be classified based on its range, as shown in Table 

2, which provides a qualitative guide to the model's forecasting accuracy. 

 

Table 2. MAPE Value Range (Montaño Moreno et al., 2013) 

Range MAPE <10% 10% - 20% 20% - 50% >50% 

Interpretation 
Very Accurate 

Forecast 
Good 

Forecast 
Fairly Good 

Forecast 
Inaccurate 
Forecast 
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5. Comparative Statistical Analysis of Models  

To compare the performance of the BiGRU and BiLSTM models, a series of statistical tests 

were conducted on the prediction results obtained from both models. The analysis began with 

a normality test using the Shapiro–Wilk test to verify whether the error data from each model 

followed a normal distribution. If the test produced a significance value (Sig.) greater than 0.05, 

the data were considered normally distributed. Subsequently, a homogeneity of variance test 

was performed using Levene's test to assess whether the variances between the two models 

were statistically equal. The data were regarded as homogeneous if the Levene's test 

significance value exceeded 0.05. If both assumptions normality and homogeneity were 

satisfied, a paired sample t-test was then applied to determine whether there was a statistically 

significant difference between the performance of the BiGRU and BiLSTM models. The test was 

conducted at a significance level of α = 0.05 with degrees of freedom (df) = n – 1, where n 

represents the number of trials. The decision criteria of t-test were defined as follows: 

a. If the significance value (Sig.) < 0.05, the difference in model performance is statistically 

significant, indicating that one model outperforms the other. 

b. If the significance value (Sig.) ≥ 0.05, the difference is not statistically significant, 

implying that both models perform comparably. 

 

6. Visualization of Prediction Results 

The model with the best evaluation performance is applied to predict the aircraft visibility 

over the next seven days, using the most recent data to ensure the relevance of the predictions. 

The prediction results are then visualized alongside the actual data, including training and 

testing data, to facilitate comparative analysis and allow for a visual assessment of the model's 

prediction accuracy. 

 

C. RESULT AND DISCUSSION 

1. Data and Preprocessing 

The research data was collected hourly over one year, from January 1, 2024, at 01:00 to 

January 1, 2025, at 00:00, resulting in 8,784 data points. Each entry records the observation 

time and the visibility value in meters, as shown in Figure 4. 
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(a) Research Data (b) Linear Interpolated Data (c) Normalized Data 

Figure 4.  Visualization of Data Preprocessing Results 

 

The data set has 61 data points with missing values. Linear interpolation fills in missing 

values by drawing a straight line between the two closest data points, with the results shown 

in Figure 4b (J. Wang, 2025). Next, MinMaxScaler normalisation is performed, with the results 

presented in Figure 4c. The results of time series windowing with 24 inputs are shown in Figure 

5a, and the results of 80:20 data division are shown in Figure 5b. Next, the data from windowing 

and the division of the training and testing sets are formulated as model inputs for the modeling 

stage. 

 

 

 

(a) (b) 

Figure 5. (a) Time Series Windowing; and (b) 80:20 Data Division 

  

Sample Window Input :  
2024-01-01 00:00:00 → 2024-01-02 00:00:00 

 Time X_norm X_original 
24 2024-01-01 0.060150 5000.0 
23 2024-01-01 0.122807 10000.0 
22 2024-01-01 0.122807 10000.0 
21 2024-01-01 0.122807 10000.0 
20 2024-01-01 0.122807 10000.0 
19 2024-01-01 0.122807 10000.0 
18 2024-01-01 0.122807 10000.0 
... ... ... ... 

8 2024-01-01 0.060150 5000.0 
7 2024-01-01 0.060150 5000.0 
6 2024-01-01 0.035088 3000.0 
8 2024-01-01 0.060150 5000.0 
5 2024-01-01 0.022556 2000.0 
4 2024-01-01 0.060150 5000.0 
3 2024-01-01 0.060150 5000.0 
2 2024-01-01 0.060150 5000.0 
1 2024-01-02 0.085213 7000.0 

 

X(t-24) X(t-23) X(t-22) ... X(t-3) X(t-2) X(t-1) Y(t) 

0.060150 0.122807 0.122807 ... 0.060150 0.060150 0.085213 0.122807 

0.122807 0.122807 0.122807 ... 0.060150 0.085213 0.122807 0.122807 

0.122807 0.122807 0.122807 ... 0.085213 0.122807 0.122807 0.122807 

0.122807 0.122807 0.122807 ... 0.122807 0.122807 0.122807 0.122807 

0.122807 0.122807 0.122807 ... 0.122807 0.122807 0.122807 0.122807 
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2. Model Configuration and Evaluation 

a. Training Model 

Both models, the BiGRU and BiLSTM, process data from the forward and backward 

directions. Each model uses a single bidirectional layer with 64 units and a dropout rate 

of 0.1 to reduce overfitting, followed by a dense layer with 32 neurons using the ReLU 

activation function. Training is carried out with batch sizes of 32 and 64, optimized using 

the Adam optimizer with a learning rate of 0.001, and monitored with EarlyStopping 

(patience = 10). Model performance is evaluated across different epochs (50, 100, 150, 

and 200) and historical data windows of 1, 24, and 48 hours to analyze how temporal 

context influences visibility prediction. 

b. Denormalization Process 

After obtaining the best model through testing on the testing data, the denormalization 

process is performed using the inverse method of the initial normalization to return the 

data to its original scale, allowing the predicted results to be interpreted in their actual 

context (Qin et al., 2024). The denormalized output data is shown at Table 3. 

 

Table 3. Denormalized Actual Y Data 

Date Denormalized Data 
1/1/2024 5000 
1/1/2024 10000 
1/1/2024 10000 
… … 
12/31/2024 8000 
12/31/2024 8000 
1/1/2025 8000 

 

c. Implementation of the BiGRU Model 

After denormalization, the model is trained with the test data based on evaluation 

metrics set as MSE, RMSE, and MAPE for each trial during the epoch number. The best 

model is selected by employing the minimum MSE, RMSE, and MAPE values obtained 

from all experiments, and the result is used to store the best model as well as the scaler 

used during training. In this study, the visibility of aircraft will be accurately predicted, 

and it will be determined whether BiGRU or BiLSTM is the best approach. Before 

obtaining the optimal results for evaluation, there was a hyperparameter tuning process, 

as evident in Table 4.  

 

Table 4. Hyperparameter Tuning Results for BiGRU Model 

D B N 0 
Dropout 0.1 

MSE RMSE MAPE Time 

1 32 64 

50 1.77 x 106 1330.4 19.998 31s 
100 1.78 x 106 1334.9 20.65 26s 
150 1.78 x 106 1333 20.064 30s 
200 1.77 x 106 1331 20.484 35s 

24 32 64 
50 1.58 x 106 1255.5 19.907 258s 

100 1.50 x 106 1223.5 19.346 265s 
150 1.61 x 106 1267.2 20.052 283s 
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D B N 0 
Dropout 0.1 

MSE RMSE MAPE Time 
200 1.59 x 106 1259.1 19.459 273s 

48 32 64 

50 1.89 x 106 1375 21.077 136s 
100 1.88 x 106 1369.4 21.273 145s 
150 1.90 x 106 1380.1 21.106 176s 
200 1.88 x 106 1372.3 21.292 183s 

 

The training process showed that increasing Historical Data, Batch Size, Neuron, and 

Epoch values, and decreasing the Dropout value, did not necessarily improve 

performance or cut down computation. Therefore, it is necessary to choose the proper 

set of parameters. The best combination of Historical Data (D) time series windowing 

for 1 hour, 24 hours, and 48 hours with other parameters such as Batch Size (B), Neuron 

(N), Epoch (O), and Dropout from the grey-lined row (D=24, B=32, N=64, O=100, 

Dropout=0.1) provided evaluation metrics of MSE 1.50 x 106, RMSE 1223.5, and MAPE 

19.346 with a computation efficiency of 265s. This is the optimal compromise between 

prediction accuracy and computational complexity and, therefore, is the optimal setting 

for calibration of the BiGRU model. 

d. Implementation of the BiLSTM Model 

The BiLSTM model was also executed to verify how the performance of BiLSTM 

compares with the BiGRU model with the same batch of hyperparameters. The results 

of hyperparameter tuning of the BiLSTM model are presented in Table 5, along with 

adjustments in time series windowing configuration of Historical Data (D) for 1 h, 24 h, 

and 48 h, among other parameters such as Batch Size (B), Neuron (N), Epoch (O), and 

Dropout, as shown in Table 5. 

 

Table 5. Hyperparameter Tuning Results for BiLSTM Model 

D B N 0 
Dropout 0.1 

MSE RMSE MAPE Time 

1 32 64 

50 1.85 x 106 1360.5 20.295 23s 
100 1.80 x 106 1340.6 20.602 50s 
150 1.84 x 106 1358.1 20.335 20s 
200 1.79 x 106 1339.7 20.889 42s 

24 32 64 

50 1.60 x 106 1264.5 19.655 294s 
100 1.58 x 106 1258.1 19.705 196s 
150 1.59 x 106 1262.5 19.81 234s 
200 1.58 x 106 1258.1 19.504 264s 

48 32 64 
50 1.98 x 106 1408.5 22.466 154s 

100 1.99 x 106 1410.2 21.58 289s 
150 1.82 x 106 1348.8 21.282 189s 

   200 1.95 x 106 1396.8 21.548 205s 

 

A lesser Dropout learning process proved that a greater Batch Size, Neuron, and Epoch, 

along with a lower dropout rate, were not necessarily the best model. The optimal 

parameters and prediction objective were the best approach. The configuration beneath 

the grey-colored row (D=24, B=32, N=64, O=200, Dropout=0.1) yielded values of MSE 

1.58 × 10^6, RMSE 1,258.1, and MAPE 19.504, with an excellent computation time of 
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264 seconds. The configuration offers an excellent balance between prediction 

performance and computational time, making it the optimal choice for hyperparameter 

tuning of the BiLSTM model. 

e. Comparison of BiGRU and BiLSTM Models 

The best results of the hyperparameter tuning for the BiGRU and BiLSTM models are 

shown in the following Table 4 and Table 5. 

 

 Table 6. Best Model Comparison Results 

D B N 0 
 Dropout 0.1 

Model MSE RMSE MAPE TIME 

24 32 64 

50 BiGRU 1.58 1255.5 19.907 258s 
50 BiLSTM 1.60 1264.5 19.655 294s 

100 BiGRU 1.50 1223.5 19.346 265s 
100 BiLSTM 1.58 1258.1 19.705 196s 
150 BiGRU 1.61 1267.2 20.052 283s 
150 BiLSTM 1.59 1262.5 19.810 234s 
200 BiGRU 1.59 1259.1 19.459 273s 

   200 BiLSTM 1.58 1258.1 19.504 264s 
  

In the hyperparameter tuning experiment with the following settings (Historical Data 

(D) = 24, Batch Size (B) = 32, Neuron (N) = 64, Dropout = 0.1), the BiGRU and BiLSTM 

models exhibited their optimal performance under different epoch settings. The BiGRU 

model yielded an MSE of 1.50 x 106, an RMSE of 1223.5, and a MAPE of 19.346, with a 

computation time of 265s at 100 epochs. The BiLSTM model, however, yielded an MSE 

of 1.58 x 106, an RMSE of 1258.1, and a MAPE of 19.504, with a computation time of 264s 

at 200 epochs. Comparing these results, BiGRU outperformed BiLSTM in all the 

evaluation measures, providing lower MSE, RMSE, and MAPE values while consuming 

nearly the same computation time. Both models' MAPE values fall in the Good 

Forecasting class, although BiGRU is more precise and computationally efficient in 

predicting visibility. 

f. Comparative statistical analysis of models 

Based on the results of twelve experimental trials, the BiGRU model achieved a mean 

value of 1319.2833 with a standard deviation of 54.2685. In contrast, the BiLSTM model 

obtained a higher mean of 1333.8667 and a standard deviation of 59.0397. The smaller 

mean value of BiGRU indicates that it produced lower prediction errors compared to 

BiLSTM. Therefore, from a descriptive statistical perspective, BiGRU demonstrates 

better predictive performance and greater stability.  

The Shapiro–Wilk normality test results for the RMSE values of both models show 

significance values of 0.085 for BiGRU and 0.054 for BiLSTM. Both significance values 

are around the threshold of 0.05, so it can be concluded that the data is normally 

distributed and meets the normality assumption. This indicates that the residuals from 

both models were usually distributed. Furthermore, the Levene’s test for homogeneity 

of variance yielded a significance value of 0.771, which is greater than 0.05, confirming 

that the two datasets have homogeneous variances. 
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Since both assumptions of normality and homogeneity were satisfied, a paired 

sample t-test was performed to assess whether there was a significant difference 

between the two models. The test produced a t-statistic value of –2.428 and a t-

critical value of 2.201 at a 5% significance level, with a p-value of 0.034. Because |t 

hitung| > t table and p < 0.05, the null hypothesis (H₀) is rejected, indicating a 

statistically significant difference between the BiGRU and BiLSTM models. In 

conclusion, the BiGRU model achieved lower average prediction errors and more 

consistent results, confirming that it outperforms BiLSTM in terms of predictive 

accuracy and model stability. The results of the normality, homogeneity, and paired 

t-tests are summarized in Table 7. 

 

Table 7. Statistical Analysis for Comparing Model Performance 

Type of Test Sig. (p-value) Conclusion 
Normality Test 
(Shapiro–Wilk) 

BiGRU = 0.085 
BiLSTM= 0.054 

The data are normally distributed 

Homogeneity Test 
(Levene’s Test) 

0.771 The variances of both models are 
homogeneous 

Paired Sample t-Test 0.035 There is a significant difference; BiGRU 
performs better 

 

The comparison plot also verifies this outcome, with the BiGRU prediction line closely 

following the actual trend of visibility, particularly in sequences with oscillating 

values. Although small fluctuations occur in highly low visibility values, BiGRU 

exhibits closer agreement with real data than BiLSTM. All required outcomes thus 

confirm that BiGRU is more accurate and computationally less expensive, making it 

the best suited model for aircraft visibility prediction in this study, as shown in Figure 

6. 

 

 
 Figure 6.  Actual and Predicted Values of the Best Model 

 

To further validate the results of this study, a comparison was conducted with 

previous research related to airport visibility prediction in Indonesia. Both studies 

applied machine learning approaches using meteorological parameters. However, 

they differ in modelling techniques and data sources. The comparison aims to 
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highlight how the present study aligns with or improves upon earlier works in terms 

of prediction accuracy and methodological approach, as shown in Table 8. 

 

Table 8. Comparison of Previous Studies on Aircraft Visibility Prediction 

Previous Research Location Method RMSE 

(Moonlight et al., 2023) 
Juanda 
Airport 

Artificial Neural 
Network 

(Backpropagation) 

677.6  
 

(Kharisma et al., 2025) 
 

Soekarno-
Hatta 

Airport 

Random Forest 
Regressor 

 
772.3 

This study 
Juanda 
Airport 

BiGRU 1,223.5 

 

Based on the comparison, the Backpropagation Neural Network used by Moonlight 

et al. (2023) at Juanda Airport achieved an RMSE of 677.6, while the Random Forest 

Regressor developed by Kharisma et al. (2025) for Soekarno–Hatta Airport obtained 

an RMSE of 772.3. Despite differences in data scale and evaluation units, both models 

demonstrated strong predictive performance in visibility forecasting. This 

comparison reinforces that applying data-driven machine learning models can 

significantly enhance aviation meteorology. The present study’s BiGRU model adopts 

a bidirectional deep learning approach for visibility prediction at Juanda Airport. 

Although the RMSE value (1,223.5) is higher than those obtained in previous studies, 

the model demonstrates the applicability of deep sequential architectures in 

capturing temporal patterns in meteorological data and provides a basis for further 

model refinement. 

g. Prediction Process with the Best Model 

The next step involves using the best model to predict 168 data points, equivalent to 

7 days, from January 1, 2025, at 00:00 to January 7, 2025, at 23:00. The prediction 

results are shown in Figure 6. 

 

 
Figure 6. Prediction Results 
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As can be observed in Figure 6, there are noticeable dissimilarities in the patterns, 

ranges, and temporal responses of the BiLSTM and BiGRU model predictions. Overall, 

both models follow the diel cycle of visibility, with higher values during the daytime and 

steep decreases at nighttime. The BiGRU model predicts visibility in the range of 

approximately 6000–10000 meters, while the BiLSTM model predicts a comparatively 

wider range of approximately 5200–10000 meters, indicating BiLSTM accounts for 

more extreme variations. BiLSTM is also sensitive to short-term dynamics, particularly 

during the morning transition, when visibility rises abruptly due to surface warming and 

fog evaporation.  

At night, BiLSTM showed a sharper decline in visibility than BiGRU, in line with findings 

related to the effects of humidity and fog (Boutle et al., 2022). The most significant 

difference occurred on 1 January 2025 at 03:00, when BiLSTM predicted a decline of 

more than 120 metres compared to BiGRU. During the day, both models predicted 

visibility above 9,000 metres, and during the seven-day observation period, most of the 

predictions exceeded 6,000 metres, meeting international safety standards. BiLSTM and 

BiGRU demonstrate more accurate model performance with MAPE of 19.50% and 

19.35%, respectively, compared to the RNN and U²Net models (He et al., 2024) and (J. 

Chen et al., 2023).  

BiGRU excels in its simpler structure, which utilizes only two gates (reset and update), 

compared to BiLSTM, which employs three gates (input, forget, and output). The simpler 

structure reduces computational overhead, lowers training time, and avoids the 

phenomenon of overfitting without affecting the capacity to learn temporal 

dependencies efficiently. The efficiency of BiGRU renders it more suitable for real-time 

or large-scale prediction tasks, where resource optimization and speed are essential. 

While BiLSTM can grasp complex temporal patterns, BiGRU achieves nearly the same, if 

not better, predictive performance with lower computational complexity and less 

complex structure. Overall, BiGRU is superior due to its stability, lower error, and lighter 

computational requirements, making it more efficient for aircraft visibility prediction. 

 

D. CONCLUSION AND SUGGESTIONS 

Both BiGRU and BiLSTM models demonstrated reliable performance in predicting aircraft 

visibility, with MAPE values around 19%. However, BiGRU achieved better results with lower 

error metrics (MSE = 1.50 × 10⁶; RMSE = 1,223.5; MAPE = 19.34%) compared to BiLSTM (MSE 

= 1.58 × 10⁶; RMSE = 1,258.1; MAPE = 19.50%), while also requiring less computational time. 

The superior performance of BiGRU can be attributed to its bidirectional recurrent architecture 

and simplified gating mechanism, which consists of only two gates: reset and update. This 

design allows the model to efficiently capture temporal dependencies from both past and future 

sequences while reducing computational overhead and minimizing the vanishing gradient 

problem. These structural advantages enable BiGRU to produce accurate predictions with 

greater stability and faster convergence compared to BiLSTM. From a practical standpoint, this 

finding holds significant importance for aviation safety. Accurate and timely visibility 

forecasting enables air traffic controllers and pilots to make informed operational decisions, 

thereby minimizing the risks of delays, diversions, and potential flight accidents under low-
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visibility conditions. From a scientific perspective, the study contributes to meteorological 

forecasting research by providing empirical evidence of the effectiveness of bidirectional 

recurrent networks, particularly BiGRU. 

For future research, it is recommended to move beyond parameter tuning and explore 

broader and more impactful extensions. These include developing multivariate forecasting 

models that integrate additional meteorological variables such as humidity, temperature, and 

wind speed to enhance predictive robustness. Moreover, the application of time series cross-

validation is strongly encouraged to improve the reliability of model evaluation and ensure a 

more accurate representation of temporal dependencies in sequential data. Implementing this 

approach would prevent overfitting and yield more generalizable forecasting results. 
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