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65 per 100,000 population. This study aims not only to project future transmission
dynamics but also to systematically explore the specific epidemiological barriers,
namely, drug resistance and relapse mechanisms, that hinder achieving this goal.
To address the heterogeneity of TB transmission, we developed a novel
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Tuberculosis; deterministic SVE3I3R model. This framework stratifies the population into
Deterministic Model; vaccinated, latent Tuberculosis Infection (LTBI), and infectious compartments,
Epidemic; explicitly distinguishing among Drug-Susceptible (DS-TB), Multidrug-Resistant
Incidence Rate; (MDR-TB), and Extensively Drug-Resistant (XDR-TB) strains. The resulting system
Indonesia. of ordinary differential equations was solved numerically using the fourth-order

Runge-Kutta (RK4) method to ensure stability and accuracy in simulating long-
term epidemiological trends from 2023 to 2030. Parameters were calibrated using
national reports and literature specific to the Indonesian context. Projections
indicate that Indonesia will miss the 2030 elimination target by a significant
margin. The model forecasts a TB incidence rate of 321 per 100,000 population by
2030, nearly five times the national benchmark. The analysis reveals that failure to
reach the target is mechanistically driven by a "relapse trap" among recovered
individuals and an alarming exponential surge in resistant strains (MDR-TB and
XDR-TB). These findings suggest that current control strategies are insufficient not
merely in scale but in structure. Evidence-based policy must urgently shift from
standard intervention to aggressive interruption of resistance pathways and
enhanced management of the latent reservoir to prevent the projected
demographic resurgence.
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A. INTRODUCTION

Tuberculosis (TB) remains a leading global cause of death from a single infectious agent,
resulting in an estimated 1.25 million fatalities in 2023, nearly double those from HIV/AIDS.
Despite being preventable and curable, TB incidence reached over 10 million new cases (134
per 100,000 people), with 87% concentrated in 30 high-burden countries. India, Indonesia,
China, the Philippines, and Pakistan account for 56% of cases. Affected individuals were 55%
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men, 33% women, and 12% children. The rise in new diagnoses to 8.2 million is linked to
COVID-19-related delays. A major concern is multidrug- or rifampicin-resistant TB (MDR/RR-
TB); while 175,923 cases were diagnosed in 2023, the estimated incidence was 400,000 cases
(Saputra et al,, 2024; WHO, 2024).

Indonesia faces a critical tuberculosis (TB) burden, ranking as the world's second-largest
contributor to the global epidemic and accounting for 10% of all cases. With an estimated
national incidence of 387 per 100,000 people, the country had approximately 1,090,000 cases
and 130,927 deaths in 2023, a mortality rate equivalent to 14 deaths per hour. Furthermore,
an estimated 29,535 cases of rifampicin-resistant TB (RR-TB) were reported. This urgent public
health crisis underscores the necessity of meeting the ambitious targets of the WHO's End TB
Strategy and the UN Sustainable Development Goals, which aim to drastically reduce TB
incidence and mortality by 2030 and 2035, respectively (Meiyanti et al., 2024; Sasmita et al.,
2025; WHO, 2024).

Indonesia's Presidential Regulation No. 67 of 2021 mandates a national strategy to
eliminate TB by 2030, targeting reductions in incidence to 65 per 100,000 and mortality to 6
per 100,000 (Presidential Regulation Number 67 of 2021 Concerning Tuberculosis Control,
2021). The plan prioritizes improving healthcare access, early diagnosis, treatment, and
preventive measures. However, persistent constraints in healthcare systems and funding
hinder progress. Overcoming these barriers and addressing the complex dynamics of TB
transmission will therefore require innovative and effective approaches.

Deterministic epidemic models are instrumental for analyzing TB transmission and
evaluating interventions. These models employ mathematical and computational techniques to
simulate disease spread, incorporating demographic, environmental, and health data (Sofonea
etal, 2022). Established frameworks like the SIR and SEIR models have been applied to predict
TB dynamics, with studies in Ghana recommending improved early detection (Mettle et al,,
2020). Research in China and Pakistan using SVEIR and SLITR models further identified
increasing treatment rates as a cost-effective elimination strategy (Liu et al., 2020; Ullah et al,,
2019).

Recent advancements include modified frameworks such as SVIR, SE3I3R, and SVEIR
models that investigate the roles of vaccination, treatment failure, cure rates, and improve
prediction accuracy (Ginting et al, 2024; Sasmita et al, 2019; Sulayman et al.,, 2021). To
effectively translate this national mandate into achievable outcomes, a robust analytical
framework is required to forecast epidemiological trends under current interventions.
Deterministic epidemic models are instrumental for analyzing these complex transmission
dynamics and evaluating the feasibility of policy targets

This study aims to evaluate Indonesia's prospects of achieving its 2030 TB elimination
target, as mandated by Presidential Regulation No. 67 of 2021. We develop a novel
deterministic compartmental model for TB transmission. Building on the SEIR framework, our
model introduces a Susceptible-Vaccinated-Three Exposed-Three Infectious-Recovered
(SVE3I3R) structure to enhance realism by more accurately reflecting TB pathogenesis.
However, existing models often overlook the detailed stratification of drug resistance levels,
specifically the distinct transmission dynamics of Multidrug-Resistant (MDR) and Extensively
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Drug-Resistant (XDR) TB. This study addresses this critical gap by developing a comprehensive
SVE3I3R model tailored to the Indonesian context.

Unlike standard SEIR frameworks, the proposed SVE3I3R model explicitly differentiates
between Drug-Susceptible (DS), MDR, and XDR tuberculosis strains. This granular stratification
provides a significant conceptual advantage, enabling a more precise assessment of how drug
resistance impedes elimination efforts and capturing the impact of relapse dynamics often
simplified in previous studies. This innovative approach, not yet widely applied in Indonesia,
provides a critical tool for understanding local transmission dynamics, developing effective
control strategies, and informing public health policy to meet the TB elimination target.

B. METHODS
1. Study Procedure
This study utilizes a quantitative research design based on deterministic mathematical
modeling to simulate epidemic scenario. This study will follow a systematic procedure, starting
with developing a disease transmission flowchart to construct an SVEIR compartmental model.
This model will be defined by a system of ordinary differential equations (ODEs). Subsequently,
constant initial values for each compartment and parameters, such as infection and recovery
rates, will be assigned using Indonesian epidemiological data and values from previous studies.
The system of ordinary differential equations (ODEs) was solved numerically using the
fourth-order Runge-Kutta (RK4) method to ensure high accuracy and stability, which is critical

for dynamic epidemiological compartmental models. For a system defined as % = (t,y), where

y represents the vector of state variables and t is time, the RK4 method iteratively computes
the solution at each time step h by combining four slope estimates: k;, calculated at the
beginning of the interval using the current state y,,; k,, evaluated at the midpoint using y,
adjusted by half of k;; k5, recalculated at the midpoint with y, updated by half of k,; and k,,
estimated at the interval’s end using y,, fully adjusted by k3. The updated state y,,,; is derived
from a weighted average of these slopes. This iterative process produced estimates of
tuberculosis incidence from 2023 to 2030 with an accuracy of A dataset < 1 x 1073, which
served as the convergence criterion for terminating the iterations (Lenhart & Workman, 2007).
All equations for the RK4 are defined by the following equations from 1 to 5.

ki = hf(tn, yn) (1

h
ky = hf(tn + E!)’n + k1/2) (2)

h
ks = hf(tn + E'yn + kz/z) (3)
ky = hf(tn + h yn + k3) (4)
Ve = Ytz (ks + 2k + 2k + ky) (5)

The dataset will be analyzed using descriptive statistics, including tabulation and
visualization, to identify key trends (Reskiaddin et al., 2025). The estimated incidence will then
be compared to Indonesia’s 2030 TB elimination targets to evaluate progress and develop data-
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driven recommendations. All analyses will be performed using R software, and the results from
the SVEIR model will be summarized.

2. Assumptions and Model Formulation

TB pathogenesis begins when susceptible individuals (S) inhale Mycobacterium tuberculosis
(Mtb). Following exposure, some develop latent TB infection (LTBI), wherein the immune
system controls bacterial replication, resulting in asymptomatic, exposed individuals (£) who
test positive on tuberculin or interferon-gamma release assays but exhibit normal chest X-rays
and negative sputum tests (MoH Indonesia, 2020; Sasmita et al.,, 2024). These individuals
remain at risk of progressing to active TB. The infection rate a governs the transition from S to
E, with the exposed compartment further stratified into three subcategories based on drug
resistance: E; as exposed individuals for drug-susceptible TB (DS-TB), E, as exposed
individuals for multidrug-resistant TB (MDR-TB), and E3as exposed individuals for extensively
drug-resistant TB (XDR-TB). The model also includes a vaccinated compartment (V ),
comprising individuals with temporary immunity acquired through vaccination. This immunity
reduces susceptibility to infection but wanes over time at a rate ¢, causing vaccinated
individuals to re-enter the susceptible compartment. Susceptible individuals enter V upon
vaccination at a rate 7.

Individuals in any exposed compartment (E) may progress to an active, infectious state.
Infectious individuals are characterized by clinical symptoms (e.g., cough, fever, weight loss)
and the ability to transmit Mtb to susceptible individuals through close contact, central to TB
transmission (Ma et al.,, 2024). These individuals are classified into three compartments based
on drug resistance profiles: I; (drug-susceptible TB, DS-TB), I, (multidrug-resistant TB, MDR-
TB), and I; (extensively drug-resistant TB, XDR-TB), with progression rates from exposed to
infectious states denoted by parameters S, f,dan S;.

DS-TB is treatable with first-line drugs, while MDR-TB resists at least isoniazid and
rifampicin. XDR-TB, a more severe form of MDR-TB, shows additional resistance to
fluoroquinolones and second-line injectable drugs such as bedaquiline or linezolid (Sikandar &
Xing, 2025). Consequently, XDR-TB involves more complex treatment, higher mortality, and
greater public health burden compared to MDR-TB or DS-TB. Treatments for XDR-TB are more
toxic, costly, and less effective than those for MDR-TB or DS-TB. A key assumption of this model
is that all susceptible individuals must pass through an exposed stage before becoming
infectious.

The model incorporates two pathways to recovery: spontaneous resolution and/or
treatment-mediated clearance for LTBI, and treatment-mediated recovery for active TB.
Individuals entering the recovered compartment (R) are considered fully healed. The first
pathway involves spontaneous clearance or treatment-driven recovery from latent infection
(compartments E;, E,, and E3), represented by rates p,, p,, and p;. Standard TB Prevention
Therapy (TPT) in Indonesia includes short-course regimens such as 3HP, 3HR, or longer 6H/9H
courses. These treatments are available at public health facilities for eligible non-TB patients
with normal diagnostic results (MoH Indonesia, 2020).

The second recovery pathway occurs through successful treatment, where infectious
individuals (I, I3, and I3) achieve cure or treatment completion upon adherence to therapeutic
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regimens. These transitions, quantified by parameters 6;, §,, and d5, reflect positive clinical
outcomes dependent on strict treatment adherence. Together with spontaneous or treatment-
mediated clearance from latency, this dual-recovery mechanism highlights the combined role
of natural immunity and effective healthcare interventions in reducing TB prevalence.

In Indonesia, drug-susceptible TB (DS-TB) is treated with a standardized 6-month regimen
(2HRZE/4HR), comprising two months of isoniazid (H), rifampicin (R), pyrazinamide (Z), and
ethambutol (E), followed by four months of H and R (Ministry of Health Indonesia, 2019, 2025).
MDR-TB is managed using all-oral regimens: a shorter 9-month course including bedaquiline
and a fluoroquinolone, or an 18-20-month individualized regimen for ineligible cases
(Kementerian Kesehatan RI, 2023; WHO, 2020). XDR-TB and complex cases are treated with
newer 6-month regimens such as BPaL. or BPaLM or individualized regimens based on drug
susceptibility testing (Ministry of Health Indonesia, 2023, 2024b). All treatments require
rigorous clinical and laboratory monitoring for safety and efficacy, as stipulated in Indonesian
national guidelines.

The model incorporates the progression of infectious individuals toward increasingly drug-
resistant TB forms. Specifically, individuals with DS-TB may develop MDR-TB or XDR-TB, while
those with MDR-TB may progress to XDR-TB. These transitions result primarily from
inadequate treatment, such as misuse of second-line drugs or non-adherence, compounded by
systemic challenges including limited diagnostics, treatment delays, and fragmented health
systems (Chin et al., 2024). Parameters quantify progression rates: y; (DS-TB to MDR-TB), y;
(DS-TB to XDR-TB), and y, (MDR-TB to XDR-TB).

The model explicitly incorporates tuberculosis relapse, a critical epidemiological feature
reflecting the heightened risk of reinfection or reactivation among recovered individuals (R).
Unlike many infections, TB does not confer permanent immunity. Recovered individuals
remain susceptible to reinfection or reactivation of latent infection, a key factor sustaining
transmission in endemic settings. Two relapse mechanisms are defined: (1) loss of immunity
(parameter @), where recovered individuals gradually revert to the susceptible compartment
(S) due to waning protection; and (2) direct reactivation (parameters 64,6,,605), where
individuals relapse directly into infectious compartments (I, 1,, I3) without returning to
susceptibility, capturing scenarios such as latent infection reactivation or recurrence from
incomplete treatment. This structure enhances the model's epidemiological realism by
accounting for both reinfection and endogenous relapse pathways.

This epidemiological model, structured on an SVEIR framework, integrates a natural birth
rate (4) and two mortality components: a natural death rate () affecting all compartments
except active infectious cases, and a TB-specific death rate (u;) for individuals in infectious
compartments before or during treatment. The population is stratified into nine compartments
representing distinct epidemiological states: Susceptible (S), Vaccinated (V), Exposed (Ey, E;,
E5 for DS-TB, MDR-TB, and XDR-TB, respectively), Infectious (I3, I, [13), and Recovered (R).
Each compartment corresponds to a disease progression stage, with its size at time t (denoted
S(t),V(t), etc.) governed by a system of differential equations. Nt gives the total population at
time (t). The model is formally defined by the following set of equations:

N({t)=S@t)+V(t)+ E(t) + E;(t) + Es(t) + I,(t) + L(t) + I3(t) + R(t) (6)



1672 | JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 10, No. 1, January 2026, pp. 1667-1682

Based on the stated assumptions, this study developed a tuberculosis (TB) transmission
flowchart, as Figure 1, to visualize the movement of individuals across epidemiological
compartments. The model assumes that the rate of change in each compartment equals the net
flow of individuals entering and exiting per unit time. This principle is formalized through the
following system of differential equations:
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Figure 1. TB transmission dynamics within an SV3E3IR compartmental framework.
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3. Initial Values of State Variables and Parameters

The initial values for state variables and parameters were obtained through a
comprehensive literature review and and national reports, prioritizing data specific to the
Indonesian context. Initial compartment populations are provided in Table 1. To ensure the
reliability of the simulation, state les and variabeparameters labeled as 'Data fitted' were
estimated by calibrating the model against historical TB incidence data from national reports
(2018-2024). Specifically, the number of DS-TB cases (I;) was calculated using WHO data as I;
= [ - I, - I3, where I represents total infectious individuals. Similarly, the exposed
compartments were disaggregated proportionally: E;=E x (I;/I),E, =E x(I,/I),and E; = E x
(I3/ I). The susceptible population was estimated as S =N - (V + E + I + R), where N denotes
the total population.

Table 1. Initial values of state variables for TB disease transmission in Indonesia

No. Symbols Size* References

1 S 156,288,179 Data fitted

2 vV 3,069,255 (Ministry of Health Indonesia, 2024a)
3 E 120,000,000 (Lye Kohetal, 2019; WHO, 2024)

4 E; 116,633,945 Data fitted

5 E, 3,302,752 Data fitted

6 E; 63,303 Data fitted

7 I 1,090,000 (WHO, 2024)

8 L 1,059,425 Data fitted

9 I, 30,000 (WHO,2024)

10 I3 575 (WHO, 2024)

11 R 552,566 (Ministry of Health Indonesia, 2024a)
12 N 281,000,000 (WHO,2024)

*The unit of state variable is the number of individuals

Certain model parameters were estimated in the absence of direct empirical data. Based on
the established epidemiological range indicating that a single infectious individual can infect
10-15 people per year (Moghaddam etal., 2016), strain-specific infection rates (a4,a,, @3) were
calculated as a; = (I; x 15)/S, a, = (I, x 15)/S,and a3 = (I3 x 15)/S. These parameters, detailed
in Table 2, are essential for simulating TB transmission dynamics and assessing the potential
impact of public health interventions in Indonesia.

Table 2. Values of parameters for TB disease transmission in Indonesia

No. Symbols Value References

1 A 1.659x10™"  (BPS-Statistics Indonesia, 2020)
2 U 5.920x107> (BPS-Statistics Indonesia, 2020)
3 T 1.9268x1072 (Widyaningsih etal, 2024)

4 & 6.6667x10% (Widyaningsih etal,, 2024)

5 a 1.017x10™"  Data fitted

6 a, 2.9x107® Data fitted

7 a5 1.0x10™* Data fitted

8 B 3.0x10% (Ojoetal, 2023)

9 B 3.0x10% (Ojoetal, 2023)

10 B3 3.0x10~% (Ojoetal, 2023)

11 Y1 5.0x10 (Dhedaetal, 2017)
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No. Symbols Value References

12 Y, 1.0x10™" (Dhedaetal,2017)

13 Y3 5.0x10% (Dhedaetal, 2017)

14 6, 8.7x10™* (WHO, 2024)

15 [P 5.7x10™"  (WHO, 2024)

16 03 49x10™"  (WHO, 2024)

17 64 8.843x10~% (Widyaningsih etal, 2024)

18 0, 8.843x10~® (Widyaningsih etal,, 2024)

19 03 8.843x10~% (Widyaningsih etal, 2024)

20 p1 7.9x10* (Widyaningsih etal, 2024)

21 0> 7.9x10™ (Widyaningsih etal, 2024)

22 ps3 7.9x10" (Widyaningsih etal, 2024)

23 [0 9.65870x10" Data fitted

24 Ut 2.0x10™" (Dheda etal, 2017; Soodejani et al., 2024)
25 Uty 4,0x10™ (Dheda etal, 2017; Soodejani et al., 2024)
26 U3 6.0x10™ (Dheda etal, 2017; Soodejani etal., 2024)

C. RESULT AND DISCUSSION

The ODE system was solved numerically using the RK4 method to simulate compartmental
dynamics over time. Iterations continued until convergence was achieved, defined as a
maximum compartmental change below the termination threshold of 1x1073. The simulation
reached high numerical stability, with a final A value of 1.29x107* Using this deterministic
SVE3I3R model, compartment sizes were projected from December 2023 to December 2030
within the Indonesian population. Results are presented in Table 3 and Figures 2, providing
epidemiological insights into the future trajectory of TB burden under current conditions. Table
3 presents the core output of the deterministic SVE3I3R model simulation run from December
2023 to December 2030. Its purpose is to quantify the projected epidemiological trajectory of
tuberculosis in Indonesia under current intervention strategies. The table moves beyond point
estimates by providing a distribution of values for each compartment, offering a robust
understanding of the range, central tendency, and variability of the model's predictions. This is
critical for assessing the certainty of the projections and the potential burden on the healthcare

system.
Table 3. Summary statistics for each compartment (in people)
Symbol Min Mean Max SD IQR
S 156,288,179 167,626,665 181,710,968 7,602,514 13,060,732
%4 3,069,255 6,128,971 9,306,950 1,830,123 3,109,348
E; 71,064,048 91,996,915 116,633,945 13,364,902 22,611,271
E, 116,633,945 2,604,747 3,302,752 378,633 640,582
E; 38,559 49,925 63,303 7,257 12,278
L 730,279 869,775 1,059,425 95,664 158,771
I, 30,000 67,851 120,937 28,137 49,396
I3 575 45,132 104,649 31,943 55,901
R 552,566 19,988,450 32,828,176 9,447,841 15,605,884

Min is the minimum value; mean is the average value; max is the maximum value; SD is the
standard deviation value; IQR is the interquartile range value. The projected outcomes in Table
3 are a direct computational result of the novel SVE3I3R model's structure and initial
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parameters, validating the epidemiological concerns raised in the study's background. The
model forecasts a persistently high burden of exposed individuals for DS-TB (E; ), with
approximately 116 million individuals, stemming from the initial large susceptible individual
(S) and the high infection rate. This vast reservoir underscores the challenge of Indonesia's
LTBI epidemic. While a decline in active DS-TB cases (I;) is observed, attributable to the high
recovery rate (§;= 8.7x107") integrated into the model, this progress is dramatically offset by
an alarming surge in drug-resistant forms. The model projects a fourfold increase in MDR-TB
(I;) and a 182-fold increase in XDR-TB (I3), a dire consequence directly driven by the
progression parameters (y;, Y2, ¥1 ) that mathematically represent the development of
resistance due to inadequate treatment and systemic healthcare failures. Furthermore, the
model predicts a significant expansion of the recovered compartment (R), which, due to the
incorporated relapse mechanisms (parameters 8; and ¢ ), paradoxically represents a large
population at risk of reinfection or reactivation, thereby perpetuating the transmission cycle
and hindering elimination efforts.

Compartment

- NOR-TH

Population

Years

Campanment

Poputston

Yonrs

(b)
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Figure 2. (a) trend of infectious individuals, (b) trend of exposed individuals, (c) trend of susceptible,
vaccinated, and recovered individuals from 2023 to 2030

Table 4 and Figure 3 are the pivotal outputs of the deterministic SVE3I3R model, presenting
the core epidemiological forecast for Indonesia's TB burden through to 2030. Their purpose is
to quantify the projected number of infectious individuals and the TB incidence rate (per
100,000 population) under the current trajectory of intervention strategies. This data is the
primary evidence used to evaluate the feasibility of achieving the national elimination target of
Presidential Regulation No. 67 of 2021.

The data presented in Table 4 and visualized in Figure 3 reveal a story of stalled progress
and a looming public health crisis. The model's projection shows a TB incidence rate that
declines marginally from 387 per 100,000 in 2023 to 321 per 100,000 in 2030. This trajectory
is characterized by a rapid diminishment in the rate of improvement; the most significant drop
occurs between 2023 and 2024 (22 cases per 100.000), after which the annual declines become
increasingly shallow. This stagnation indicates that the current suite of interventions has
reached the limits of its effectiveness and cannot induce the exponential decline required for
elimination. The apparent improvement in absolute case numbers is also affected by population
growth, resulting in a persistently high disease burden that continues to fuel community

transmission.
Table 4. Prediction of TB incidence rate based on the SVE313R Model
Years Total Population Total Infectious Individuals Proportion in 100.000
2023 281,000,000 1,090,000 387
2024 283,357,176 1,034,191 365
2025 285,734,347 995,591 348
2026 288,131,326 970,717 337
2027 290,548,016 956,611 329
2028 292,984,382 950,776 325
2029 295,440,453 951,112 322

2030 297,916,303 955,866 321
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When this projected trajectory is juxtaposed with the linear path required to meet the
national target of 65 per 100,000, the analysis reveals a profound and growing strategic
divergence. The target line represents an ambitious. In stark contrast, the model's output shows
a pathway that begins to diverge almost immediately and evolves into a chasm by 2030. The
projected incidence for 2030 is not merely above the target; it is nearly five times higher, a clear
quantitative verdict on the inadequacy of the status quo. This widening gap is not an abstraction
but a measure of the future morbidity, mortality, and economic cost incurred if policies remain
unchanged. It underscores a critical failure to translate a high-level political commitment into
an operational strategy powerful enough to alter the fundamental dynamics of TB transmission
and progression within the population.
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Figure 3. Prediction versus target on TB incidence rate in Indonesia from 2023 to 2030

The overall interpretation of these results is that Indonesia's current TB control program,
while making strides in case detection and treatment for DS-TB, is structurally insufficient to
alter the fundamental dynamics required for elimination. Our findings align with the concerns
raised by global reports, such as those from the WHO, which highlight the escalating threat of
drug-resistant TB in high-burden countries (WHO, 2024). However, they stand in contrast to
more optimistic linear projections that may not fully account for the non-linear complexities of
TB transmission, such as relapse and the development of resistance. The divergence can be
attributed to our model's explicit incorporation of these critical pathways, specifically, the
transitions between drug resistance classes (y parameters) and the relapse mechanisms (6 and
¢ parameters). While previous studies in other regions using SVEIR or SEIR frameworks have
emphasized treatment rate improvements (Dicko et al., 2024; Hajji & Albargi, 2022), our results
suggest that in the Indonesian context, these gains are being systematically undermined by the
twin crises of drug resistance and reactivation, a nuance that simpler models may not capture.

The generalizability of these findings must be considered cautiously. The model is particular
to the Indonesian epidemiological context, calibrated with local data on population
demographics, initial compartment sizes, and parameter estimates. Therefore, the precise
numerical projections are not directly transferable to other countries. However, the model's
structure and the identified dynamics possess strong theoretical generalizability. The
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mechanisms driving the results, specifically, how high relapse rates in a large recovered
population and inadequate treatment leading to explosive drug-resistant TB growth, are likely
applicable to other high-burden, resource-limited settings with similar healthcare system
challenges and large LTBI pools. The SVE3I3R framework can serve as a template for analogous
studies in other countries aiming to evaluate their elimination targets against complex, realistic
transmission dynamics.

The primary theoretical implication of this work is the advancement of deterministic
compartmental modeling for TB. By stratifying the exposed and infectious compartments by
drug-resistance profile (E;, E,, E3, and I;, I, I3) and explicitly modeling transitions between
them (y parameters), our SVE3I3R model provides a more granular and realistic representation
of the TB epidemic than traditional SEIR or SVEIR models. Furthermore, explicitly
incorporating a dual relapse mechanism, both a return to susceptibility (¢) and direct
reactivation to infectious states (6), adds significant epidemiological fidelity. This model
contributes to the theoretical understanding that achieving TB elimination requires
frameworks that move beyond tracking overall incidence and instead capture the internal shifts
within the epidemic, particularly the escalating threat of drug resistance.

This study has several critical implications for future research. First, it underscores the
necessity of moving from aggregate TB models to those that disaggregate by resistance strain
to forecast future burdens accurately. Subsequent research should focus on refining the
parameter estimates for resistance development and relapse through longitudinal cohort
studies within Indonesia. Second, the model provides a platform for in-silico testing of
intervention strategies. Future work should employ this SVE3I3R model to conduct cost-
effectiveness analyses of various scenarios, such as the impact of scaling up universal drug
susceptibility testing (DST), enhancing infection control, or expanding TB Preventive Therapy
(TPT) to different target groups. Finally, there is a need to integrate spatial heterogeneity or
agent-based approaches to identify subnational hotspots and effectively tailor interventions.

For public health practice, the implications are urgent and clear. A "business-as-usual”
approach focused primarily on diagnosing and treating DS-TB will fail. Practice must pivot to a
dual-strategy: aggressively containing drug-resistant TB while simultaneously draining the
latent reservoir (Chaw et al.,, 2020). This necessitates a massive scale-up of laboratory capacity
to ensure universal DST for all diagnosed cases, enabling prompt initiation of appropriate
regimens. Concurrently, a nationwide expansion of TPT, targeting high-risk groups and the vast
latent pool, is imperative to prevent reactivation. Infection control measures in healthcare
settings and congregate living environments must be strengthened to break transmission
chains, especially drug-resistant strains (Marme et al., 2023; Vigenschow et al., 2021).

At the policy level, these findings serve as a critical evidence base for a fundamental
overhaul of Indonesia's TB control strategy, as mandated by Presidential Regulation No. 67 of
2021. Policymakers must recognize that the current trajectory will not meet the 2030 target.
Policy implications include: (1) Reallocating Resources: Directing significant funding towards
strengthening the laboratory network for DST and securing sustainable access to shorter, more
effective regimens for MDR-TB/XDR-TB. (2) Programmatic Expansion: Formulating and
funding a comprehensive, large-scale TPT rollout policy integrated into primary healthcare. (3)
Regulatory Action: Enforcing stronger regulations for infection control and mandating rapid
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molecular diagnostics as the initial test for all TB suspects. This evidence demands that the
ambitious political commitment be matched with an equally ambitious and evidence-informed
operational plan.

This study has several limitations. First, as a deterministic model, it does not account for
stochastic events, which can influence outbreak dynamics, especially in low-prevalence settings
nearing elimination. Second, the model assumes homogeneous mixing within the population,
which may oversimplify complex contact networks and spatial heterogeneity in transmission
risk across Indonesia's diverse archipelago. Third, several parameters, for instance, for relapse
(6) and resistance development (y), were estimated from international literature or fitted due
to a lack of robust local data; this could introduce bias. The direction of this potential bias is
likely towards underestimating the complexity of the epidemic, meaning the actual situation
may be more challenging than projected. Finally, the model does not incorporate potential
future advancements in vaccines or therapeutics, which could alter the trajectory if successfully
deployed before 2030.

D. CONCLUSION AND SUGGESTIONS

This study's findings show that Indonesia will not achieve the 2030 elimination target of 65
cases per 100,000 population. Instead, the incidence rate is forecasted to reach 321 per 100,000
by 2030, nearly five times the national goal. The surge in Multidrug-Resistant (MDR) and
Extensively Drug-Resistant (XDR) cases, projected to exceed 100,000 cases respectively,
highlights the critical failure of current control strategies to contain resistant strains.
Theoretically, this research contributes to the field by demonstrating that incorporating
detailed resistance stratification (SVE3I3R) significantly alters projection outcomes compared
to traditional aggregate models. Practical implications suggest that without an urgent shift to
universal drug susceptibility testing and aggressive preventive therapy, the epidemic will
persist.

The findings consistently address the study's primary objective where to project TB
transmission and assess the 2030 target. The results unequivocally demonstrate that without
an immediate and paradigm-shifting response that prioritizes the containment of drug-
resistant TB and the prevention of reactivation, the goal of TB elimination in Indonesia will
remain out of reach. This research delivers a clear and urgent call to action for policymakers
and public health practitioners. Future research should employ stochastic modeling to account
for random variation in low-incidence scenarios and incorporate spatial heterogeneity to refine
these projections further.
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