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 Indonesia, bearing the world’s second-highest tuberculosis (TB) burden, has 
mandated a national target to eliminate TB by 2030, aiming for an incidence rate of 
65 per 100,000 population. This study aims not only to project future transmission 
dynamics but also to systematically explore the specific epidemiological barriers, 
namely, drug resistance and relapse mechanisms, that hinder achieving this goal. 
To address the heterogeneity of TB transmission, we developed a novel 
deterministic SVE3I3R model. This framework stratifies the population into 
vaccinated, latent Tuberculosis Infection (LTBI), and infectious compartments, 
explicitly distinguishing among Drug-Susceptible (DS-TB), Multidrug-Resistant 
(MDR-TB), and Extensively Drug-Resistant (XDR-TB) strains. The resulting system 
of ordinary differential equations was solved numerically using the fourth-order 
Runge-Kutta (RK4) method to ensure stability and accuracy in simulating long-
term epidemiological trends from 2023 to 2030. Parameters were calibrated using 
national reports and literature specific to the Indonesian context. Projections 
indicate that Indonesia will miss the 2030 elimination target by a significant 
margin. The model forecasts a TB incidence rate of 321 per 100,000 population by 
2030, nearly five times the national benchmark. The analysis reveals that failure to 
reach the target is mechanistically driven by a "relapse trap" among recovered 
individuals and an alarming exponential surge in resistant strains (MDR-TB and 
XDR-TB). These findings suggest that current control strategies are insufficient not 
merely in scale but in structure. Evidence-based policy must urgently shift from 
standard intervention to aggressive interruption of resistance pathways and 
enhanced management of the latent reservoir to prevent the projected 
demographic resurgence. 
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A. INTRODUCTION  

Tuberculosis (TB) remains a leading global cause of death from a single infectious agent, 

resulting in an estimated 1.25 million fatalities in 2023, nearly double those from HIV/AIDS. 

Despite being preventable and curable, TB incidence reached over 10 million new cases (134 

per 100,000 people), with 87% concentrated in 30 high-burden countries. India, Indonesia, 

China, the Philippines, and Pakistan account for 56% of cases. Affected individuals were 55% 
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men, 33% women, and 12% children. The rise in new diagnoses to 8.2 million is linked to 

COVID-19-related delays. A major concern is multidrug- or rifampicin-resistant TB (MDR/RR-

TB); while 175,923 cases were diagnosed in 2023, the estimated incidence was 400,000 cases 

(Saputra et al., 2024; WHO, 2024). 

Indonesia faces a critical tuberculosis (TB) burden, ranking as the world's second-largest 

contributor to the global epidemic and accounting for 10% of all cases. With an estimated 

national incidence of 387 per 100,000 people, the country had approximately 1,090,000 cases 

and 130,927 deaths in 2023, a mortality rate equivalent to 14 deaths per hour. Furthermore, 

an estimated 29,535 cases of rifampicin-resistant TB (RR-TB) were reported. This urgent public 

health crisis underscores the necessity of meeting the ambitious targets of the WHO's End TB 

Strategy and the UN Sustainable Development Goals, which aim to drastically reduce TB 

incidence and mortality by 2030 and 2035, respectively (Meiyanti et al., 2024; Sasmita et al., 

2025; WHO, 2024). 

Indonesia's Presidential Regulation No. 67 of 2021 mandates a national strategy to 

eliminate TB by 2030, targeting reductions in incidence to 65 per 100,000 and mortality to 6 

per 100,000 (Presidential Regulation Number 67 of 2021 Concerning Tuberculosis Control, 

2021). The plan prioritizes improving healthcare access, early diagnosis, treatment, and 

preventive measures. However, persistent constraints in healthcare systems and funding 

hinder progress. Overcoming these barriers and addressing the complex dynamics of TB 

transmission will therefore require innovative and effective approaches. 

Deterministic epidemic models are instrumental for analyzing TB transmission and 

evaluating interventions. These models employ mathematical and computational techniques to 

simulate disease spread, incorporating demographic, environmental, and health data (Sofonea 

et al., 2022). Established frameworks like the SIR and SEIR models have been applied to predict 

TB dynamics, with studies in Ghana recommending improved early detection (Mettle et al., 

2020). Research in China and Pakistan using SVEIR and SLITR models further identified 

increasing treatment rates as a cost-effective elimination strategy (Liu et al., 2020; Ullah et al., 

2019). 

Recent advancements include modified frameworks such as SVIR, SE3I3R, and SVEIR 

models that investigate the roles of vaccination, treatment failure, cure rates, and improve 

prediction accuracy (Ginting et al., 2024; Sasmita et al., 2019; Sulayman et al., 2021). To 

effectively translate this national mandate into achievable outcomes, a robust analytical 

framework is required to forecast epidemiological trends under current interventions. 

Deterministic epidemic models are instrumental for analyzing these complex transmission 

dynamics and evaluating the feasibility of policy targets 

This study aims to evaluate Indonesia's prospects of achieving its 2030 TB elimination 

target, as mandated by Presidential Regulation No. 67 of 2021. We develop a novel 

deterministic compartmental model for TB transmission. Building on the SEIR framework, our 

model introduces a Susceptible-Vaccinated-Three Exposed-Three Infectious-Recovered 

(SVE3I3R) structure to enhance realism by more accurately reflecting TB pathogenesis. 

However, existing models often overlook the detailed stratification of drug resistance levels, 

specifically the distinct transmission dynamics of Multidrug-Resistant (MDR) and Extensively 
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Drug-Resistant (XDR) TB. This study addresses this critical gap by developing a comprehensive 

SVE3I3R model tailored to the Indonesian context. 

Unlike standard SEIR frameworks, the proposed SVE3I3R model explicitly differentiates 

between Drug-Susceptible (DS), MDR, and XDR tuberculosis strains. This granular stratification 

provides a significant conceptual advantage, enabling a more precise assessment of how drug 

resistance impedes elimination efforts and capturing the impact of relapse dynamics often 

simplified in previous studies. This innovative approach, not yet widely applied in Indonesia, 

provides a critical tool for understanding local transmission dynamics, developing effective 

control strategies, and informing public health policy to meet the TB elimination target. 

 

B. METHODS 

1. Study Procedure 

This study utilizes a quantitative research design based on deterministic mathematical 

modeling to simulate epidemic scenario. This study will follow a systematic procedure, starting 

with developing a disease transmission flowchart to construct an SVEIR compartmental model. 

This model will be defined by a system of ordinary differential equations (ODEs). Subsequently, 

constant initial values for each compartment and parameters, such as infection and recovery 

rates, will be assigned using Indonesian epidemiological data and values from previous studies. 

The system of ordinary differential equations (ODEs) was solved numerically using the 

fourth-order Runge-Kutta (RK4) method to ensure high accuracy and stability, which is critical 

for dynamic epidemiological compartmental models. For a system defined as 
𝑑𝑦

𝑑𝑡
= (𝑡, 𝑦), where 

𝑦 represents the vector of state variables and 𝑡 is time, the RK4 method iteratively computes 

the solution at each time step ℎ  by combining four slope estimates: 𝑘1 , calculated at the 

beginning of the interval using the current state 𝑦𝑛 ; 𝑘2, evaluated at the midpoint using 𝑦𝑛 

adjusted by half of 𝑘1; 𝑘3, recalculated at the midpoint with 𝑦𝑛 updated by half of 𝑘2; and 𝑘4, 

estimated at the interval’s end using 𝑦𝑛 fully adjusted by 𝑘3. The updated state 𝑦𝑛+1 is derived 

from a weighted average of these slopes. This iterative process produced estimates of 

tuberculosis incidence from 2023 to 2030 with an accuracy of Δ dataset ≤ 1 × 10−3 , which 

served as the convergence criterion for terminating the iterations (Lenhart & Workman, 2007). 

All equations for the RK4 are defined by the following equations from 1 to 5.  

 

𝑘1 = ℎ𝑓(𝑡𝑛, 𝑦𝑛) (1) 

𝑘2 = ℎ𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 + 𝑘1/2) (2) 

𝑘3 = ℎ𝑓(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 + 𝑘2/2) (3) 

𝑘4 = ℎ𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3) (4) 

𝑦𝑛+1 =  𝑦𝑛+ 
1

6
 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (5) 

 

The dataset will be analyzed using descriptive statistics, including tabulation and 

visualization, to identify key trends (Reskiaddin et al., 2025). The estimated incidence will then 

be compared to Indonesia’s 2030 TB elimination targets to evaluate progress and develop data-
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driven recommendations. All analyses will be performed using R software, and the results from 

the SVEIR model will be summarized. 

 

2. Assumptions and Model Formulation 

TB pathogenesis begins when susceptible individuals (𝑆) inhale Mycobacterium tuberculosis 

(Mtb). Following exposure, some develop latent TB infection (LTBI), wherein the immune 

system controls bacterial replication, resulting in asymptomatic, exposed individuals (𝐸) who 

test positive on tuberculin or interferon-gamma release assays but exhibit normal chest X-rays 

and negative sputum tests (MoH Indonesia, 2020; Sasmita et al., 2024). These individuals 

remain at risk of progressing to active TB. The infection rate α governs the transition from 𝑆 to 

𝐸 , with the exposed compartment further stratified into three subcategories based on drug 

resistance: 𝐸1  as exposed individuals for drug-susceptible TB (DS-TB), 𝐸2  as exposed 

individuals for multidrug-resistant TB (MDR-TB), and 𝐸3as exposed individuals for extensively 

drug-resistant TB (XDR-TB). The model also includes a vaccinated compartment ( 𝑉 ), 

comprising individuals with temporary immunity acquired through vaccination. This immunity 

reduces susceptibility to infection but wanes over time at a rate 𝜉 , causing vaccinated 

individuals to re-enter the susceptible compartment. Susceptible individuals enter 𝑉  upon 

vaccination at a rate 𝜏. 

Individuals in any exposed compartment (𝐸) may progress to an active, infectious state. 

Infectious individuals are characterized by clinical symptoms (e.g., cough, fever, weight loss) 

and the ability to transmit Mtb to susceptible individuals through close contact, central to TB 

transmission (Ma et al., 2024). These individuals are classified into three compartments based 

on drug resistance profiles: 𝐼1 (drug-susceptible TB, DS-TB), 𝐼2 (multidrug-resistant TB, MDR-

TB), and 𝐼3 (extensively drug-resistant TB, XDR-TB), with progression rates from exposed to 

infectious states denoted by parameters 𝛽1, 𝛽2dan 𝛽3. 

DS-TB is treatable with first-line drugs, while MDR-TB resists at least isoniazid and 

rifampicin. XDR-TB, a more severe form of MDR-TB, shows additional resistance to 

fluoroquinolones and second-line injectable drugs such as bedaquiline or linezolid (Sikandar & 

Xing, 2025). Consequently, XDR-TB involves more complex treatment, higher mortality, and 

greater public health burden compared to MDR-TB or DS-TB. Treatments for XDR-TB are more 

toxic, costly, and less effective than those for MDR-TB or DS-TB. A key assumption of this model 

is that all susceptible individuals must pass through an exposed stage before becoming 

infectious. 

The model incorporates two pathways to recovery: spontaneous resolution and/or 

treatment-mediated clearance for LTBI, and treatment-mediated recovery for active TB. 

Individuals entering the recovered compartment (𝑅) are considered fully healed. The first 

pathway involves spontaneous clearance or treatment-driven recovery from latent infection 

(compartments 𝐸1 , 𝐸2 , and 𝐸3), represented by rates 𝜌1 , 𝜌2 , and 𝜌3 . Standard TB Prevention 

Therapy (TPT) in Indonesia includes short-course regimens such as 3HP, 3HR, or longer 6H/9H 

courses. These treatments are available at public health facilities for eligible non-TB patients 

with normal diagnostic results (MoH Indonesia, 2020). 

The second recovery pathway occurs through successful treatment, where infectious 

individuals (𝐼1, 𝐼2, and 𝐼3) achieve cure or treatment completion upon adherence to therapeutic 
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regimens. These transitions, quantified by parameters 𝛿1 , 𝛿2 , and 𝛿3 , reflect positive clinical 

outcomes dependent on strict treatment adherence. Together with spontaneous or treatment-

mediated clearance from latency, this dual-recovery mechanism highlights the combined role 

of natural immunity and effective healthcare interventions in reducing TB prevalence. 

In Indonesia, drug-susceptible TB (DS-TB) is treated with a standardized 6-month regimen 

(2HRZE/4HR), comprising two months of isoniazid (H), rifampicin (R), pyrazinamide (Z), and 

ethambutol (E), followed by four months of H and R (Ministry of Health Indonesia, 2019, 2025). 

MDR-TB is managed using all-oral regimens: a shorter 9-month course including bedaquiline 

and a fluoroquinolone, or an 18–20-month individualized regimen for ineligible cases 

(Kementerian Kesehatan RI, 2023; WHO, 2020). XDR-TB and complex cases are treated with 

newer 6-month regimens such as BPaL or BPaLM or individualized regimens based on drug 

susceptibility testing (Ministry of Health Indonesia, 2023, 2024b). All treatments require 

rigorous clinical and laboratory monitoring for safety and efficacy, as stipulated in Indonesian 

national guidelines. 

The model incorporates the progression of infectious individuals toward increasingly drug-

resistant TB forms. Specifically, individuals with DS-TB may develop MDR-TB or XDR-TB, while 

those with MDR-TB may progress to XDR-TB. These transitions result primarily from 

inadequate treatment, such as misuse of second-line drugs or non-adherence, compounded by 

systemic challenges including limited diagnostics, treatment delays, and fragmented health 

systems (Chin et al., 2024). Parameters quantify progression rates: 𝛾1 (DS-TB to MDR-TB), 𝛾3 

(DS-TB to XDR-TB), and 𝛾2 (MDR-TB to XDR-TB). 

The model explicitly incorporates tuberculosis relapse, a critical epidemiological feature 

reflecting the heightened risk of reinfection or reactivation among recovered individuals (𝑅). 

Unlike many infections, TB does not confer permanent immunity. Recovered individuals 

remain susceptible to reinfection or reactivation of latent infection, a key factor sustaining 

transmission in endemic settings. Two relapse mechanisms are defined: (1) loss of immunity 

(parameter 𝜑), where recovered individuals gradually revert to the susceptible compartment 

( 𝑆 ) due to waning protection; and (2) direct reactivation (parameters 𝜃1, 𝜃2, 𝜃3 ), where 

individuals relapse directly into infectious compartments ( 𝐼1, 𝐼2,  𝐼3 ) without returning to 

susceptibility, capturing scenarios such as latent infection reactivation or recurrence from 

incomplete treatment. This structure enhances the model's epidemiological realism by 

accounting for both reinfection and endogenous relapse pathways. 

This epidemiological model, structured on an SVEIR framework, integrates a natural birth 

rate (𝛬) and two mortality components: a natural death rate (𝜇) affecting all compartments 

except active infectious cases, and a TB-specific death rate (𝜇𝑡) for individuals in infectious 

compartments before or during treatment. The population is stratified into nine compartments 

representing distinct epidemiological states: Susceptible (𝑆), Vaccinated (𝑉), Exposed (𝐸1, 𝐸2, 

𝐸3 for DS-TB, MDR-TB, and XDR-TB, respectively), Infectious (𝐼1, 𝐼2,  I3), and Recovered (𝑅). 

Each compartment corresponds to a disease progression stage, with its size at time t (denoted 

𝑆(𝑡), 𝑉(𝑡), etc.) governed by a system of differential equations. Nt gives the total population at 

time (𝑡). The model is formally defined by the following set of equations:  

 

𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) +  𝐸1(𝑡) + 𝐸2(𝑡) + 𝐸3(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡) + 𝑅(𝑡) (6) 
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Based on the stated assumptions, this study developed a tuberculosis (TB) transmission 

flowchart, as Figure 1, to visualize the movement of individuals across epidemiological 

compartments. The model assumes that the rate of change in each compartment equals the net 

flow of individuals entering and exiting per unit time. This principle is formalized through the 

following system of differential equations: 

 

 

Figure 1. TB transmission dynamics within an SV3E3IR compartmental framework. 

 

𝑑𝑆

𝑑𝑡
= 𝛬N +  𝜉𝑉 +  𝜑𝑅 −

𝑆

𝑁
 ∑ 𝛼𝑖𝐼𝑖

3

𝑖=1

− 𝜇𝑆 −  𝜏𝑆 (7) 

𝑑𝑉

𝑑𝑡
= 𝜏𝑆 − 𝑉(𝜉 + 𝜇) (8) 

𝑑𝐸1

𝑑𝑡
=

𝛼1𝑆𝐼1

𝑁
 − 𝐸1(𝛽1 + 𝜌1 + 𝜇) (9) 

𝑑𝐸2

𝑑𝑡
=

𝛼2𝑆𝐼2

𝑁
 − 𝐸2(𝛽2 + 𝜌2 + 𝜇) (10) 

𝑑𝐸3

𝑑𝑡
=

𝛼3𝑆𝐼3

𝑁
− 𝐸3(𝛽3 + 𝜌3 + 𝜇) (11) 

𝑑𝐼1

𝑑𝑡
= 𝛽1𝐸1 + 𝜃1𝑅 − 𝐼1(𝛿1 + 𝛾1 + 𝛾3 + 𝜇𝑡1) (12) 

𝑑𝐼2

𝑑𝑡
= 𝛽2𝐸2 + 𝜃2𝑅 + 𝛾1𝐼1 − 𝐼2(𝛿2 + 𝛾2 + 𝜇𝑡2) (13) 

𝑑𝐼3

𝑑𝑡
= 𝛽3𝐸3 + 𝜃3𝑅 + 𝛾3𝐼1 + 𝛾2𝐼2 − 𝐼3(𝛿3 − 𝜇𝑡3) (14) 

𝑑𝑅

𝑑𝑡
= ∑(𝛿𝑖𝐼𝑖

3

𝑖=1

+ 𝜌1𝐸1) − 𝑅(𝜑 + ∑ 𝜃𝑖

3

𝑖=1

+ 𝜇) (15) 
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3. Initial Values of State Variables and Parameters 

The initial values for state variables and parameters were obtained through a 

comprehensive literature review and and national reports, prioritizing data specific to the 

Indonesian context. Initial compartment populations are provided in Table 1. To ensure the 

reliability of the simulation, state les and variabeparameters labeled as 'Data fitted' were 

estimated by calibrating the model against historical TB incidence data from national reports 

(2018–2024). Specifically, the number of DS-TB cases (𝐼1) was calculated using WHO data as 𝐼1 

= 𝐼  - 𝐼2  - 𝐼3 , where 𝐼  represents total infectious individuals. Similarly, the exposed 

compartments were disaggregated proportionally: 𝐸1= 𝐸 × (𝐼1/ 𝐼), 𝐸2 = 𝐸 × (𝐼2/ 𝐼), and 𝐸3 = 𝐸 × 

(𝐼3/ 𝐼). The susceptible population was estimated as 𝑆 = 𝑁 - (𝑉 + 𝐸 + 𝐼 + 𝑅), where 𝑁 denotes 

the total population.  

 

Table 1. Initial values of state variables for TB disease transmission in Indonesia 

No. Symbols Size* References 
1 𝑆 156,288,179 Data fitted 
2 𝑉 3,069,255 (Ministry of Health Indonesia, 2024a) 
3 𝐸 120,000,000 (Lye Koh et al., 2019; WHO, 2024) 
4 𝐸1 116,633,945 Data fitted 
5 𝐸2 3,302,752 Data fitted 
6 𝐸3 63,303 Data fitted 
7 𝐼 1,090,000 (WHO, 2024) 
8 𝐼1 1,059,425 Data fitted 
9 𝐼2 30,000 (WHO, 2024) 
10 𝐼3 575 (WHO, 2024) 
11 𝑅 552,566 (Ministry of Health Indonesia, 2024a) 
12 𝑁 281,000,000 (WHO, 2024) 

*The unit of state variable is the number of individuals 

 

Certain model parameters were estimated in the absence of direct empirical data. Based on 

the established epidemiological range indicating that a single infectious individual can infect 

10–15 people per year (Moghaddam et al., 2016), strain-specific infection rates (𝛼1,𝛼2, 𝛼3) were 

calculated as 𝛼1 = (𝐼1 × 15)/𝑆, 𝛼2 = (𝐼2 × 15)/𝑆, and 𝛼3 = (𝐼3 × 15)/𝑆. These parameters, detailed 

in Table 2, are essential for simulating TB transmission dynamics and assessing the potential 

impact of public health interventions in Indonesia. 

 

Table 2. Values of parameters for TB disease transmission in Indonesia 

No. Symbols Value References 
1 𝛬 1.659×10⁻¹ (BPS-Statistics Indonesia, 2020) 
2 𝜇 5.920×10⁻² (BPS-Statistics Indonesia, 2020) 
3 𝜏 1.9268×10⁻² (Widyaningsih et al., 2024) 
4 𝜉 6.6667×10⁻² (Widyaningsih et al., 2024) 
5 𝛼1 1.017×10⁻¹ Data fitted 
6 𝛼2 2.9×10⁻³ Data fitted 
7 𝛼3 1.0×10⁻⁴ Data fitted 
8 𝛽1 3.0×10⁻³ (Ojo et al., 2023) 
9 𝛽2 3.0×10⁻³ (Ojo et al., 2023) 
10 𝛽3 3.0×10⁻³ (Ojo et al., 2023) 
11 𝛾1 5.0×10⁻² (Dheda et al., 2017) 
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No. Symbols Value References 
12 𝛾2 1.0×10⁻¹ (Dheda et al., 2017) 
13 𝛾3 5.0×10⁻² (Dheda et al., 2017) 
14 𝛿1 8.7×10⁻¹ (WHO, 2024) 
15 𝛿2 5.7×10⁻¹ (WHO, 2024) 
16 𝛿3 4.9×10⁻¹ (WHO, 2024) 
17 𝜃1 8.843×10⁻³ (Widyaningsih et al., 2024) 
18 𝜃2 8.843×10⁻³ (Widyaningsih et al., 2024) 
19 𝜃3 8.843×10⁻³ (Widyaningsih et al., 2024) 
20 𝜌1 7.9×10⁻¹ (Widyaningsih et al., 2024)  
21 𝜌2 7.9×10⁻¹ (Widyaningsih et al., 2024)  
22 𝜌3 7.9×10⁻¹ (Widyaningsih et al., 2024) 
23 𝜑 9.65870×10⁻¹ Data fitted 
24 𝜇𝑡1 2.0×10⁻¹ (Dheda et al., 2017; Soodejani et al., 2024) 
25 𝜇𝑡2 4.0×10⁻¹ (Dheda et al., 2017; Soodejani et al., 2024) 
26 𝜇𝑡3 6.0×10⁻¹ (Dheda et al., 2017; Soodejani et al., 2024) 

 

C. RESULT AND DISCUSSION 

The ODE system was solved numerically using the RK4 method to simulate compartmental 

dynamics over time. Iterations continued until convergence was achieved, defined as a 

maximum compartmental change below the termination threshold of 1×10⁻³. The simulation 

reached high numerical stability, with a final Δ value of 1.29×10⁻⁴. Using this deterministic 

SVE3I3R model, compartment sizes were projected from December 2023 to December 2030 

within the Indonesian population. Results are presented in Table 3 and Figures 2, providing 

epidemiological insights into the future trajectory of TB burden under current conditions. Table 

3 presents the core output of the deterministic SVE3I3R model simulation run from December 

2023 to December 2030. Its purpose is to quantify the projected epidemiological trajectory of 

tuberculosis in Indonesia under current intervention strategies. The table moves beyond point 

estimates by providing a distribution of values for each compartment, offering a robust 

understanding of the range, central tendency, and variability of the model's predictions. This is 

critical for assessing the certainty of the projections and the potential burden on the healthcare 

system. 

 

Table 3. Summary statistics for each compartment (in people) 

Symbol Min Mean Max SD IQR 
𝑆  156,288,179   167,626,665   181,710,968   7,602,514   13,060,732  
𝑉  3,069,255   6,128,971   9,306,950   1,830,123   3,109,348  
𝐸1   71,064,048   91,996,915   116,633,945   13,364,902   22,611,271  
𝐸2   116,633,945   2,604,747   3,302,752   378,633   640,582  
𝐸3   38,559   49,925   63,303   7,257   12,278  
𝐼1  730,279   869,775   1,059,425   95,664   158,771  
𝐼2  30,000   67,851   120,937   28,137   49,396  
𝐼3  575   45,132   104,649   31,943   55,901  
𝑅  552,566   19,988,450   32,828,176   9,447,841   15,605,884  

 

Min is the minimum value; mean is the average value; max is the maximum value; SD is the 

standard deviation value; IQR is the interquartile range value. The projected outcomes in Table 

3 are a direct computational result of the novel SVE3I3R model's structure and initial 
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parameters, validating the epidemiological concerns raised in the study's background. The 

model forecasts a persistently high burden of exposed individuals for DS-TB ( 𝐸1 ), with 

approximately 116 million individuals, stemming from the initial large susceptible individual 

(𝑆) and the high infection rate. This vast reservoir underscores the challenge of Indonesia's 

LTBI epidemic. While a decline in active DS-TB cases (𝐼1) is observed, attributable to the high 

recovery rate (𝛿1= 8.7×10⁻¹) integrated into the model, this progress is dramatically offset by 

an alarming surge in drug-resistant forms. The model projects a fourfold increase in MDR-TB 

( 𝐼2 ) and a 182-fold increase in XDR-TB ( 𝐼3 ), a dire consequence directly driven by the 

progression parameters ( 𝛾1 ,  𝛾2 , 𝛾1 ) that mathematically represent the development of 

resistance due to inadequate treatment and systemic healthcare failures. Furthermore, the 

model predicts a significant expansion of the recovered compartment (𝑅), which, due to the 

incorporated relapse mechanisms (parameters 𝜃1  and 𝜑 ), paradoxically represents a large 

population at risk of reinfection or reactivation, thereby perpetuating the transmission cycle 

and hindering elimination efforts. 

 

 
(a) 

 

 
(b) 
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(c) 

Figure 2. (a) trend of infectious individuals, (b) trend of exposed individuals, (c) trend of susceptible, 

vaccinated, and recovered individuals from 2023 to 2030 

 

Table 4 and Figure 3 are the pivotal outputs of the deterministic SVE3I3R model, presenting 

the core epidemiological forecast for Indonesia's TB burden through to 2030. Their purpose is 

to quantify the projected number of infectious individuals and the TB incidence rate (per 

100,000 population) under the current trajectory of intervention strategies. This data is the 

primary evidence used to evaluate the feasibility of achieving the national elimination target of 

Presidential Regulation No. 67 of 2021. 

The data presented in Table 4 and visualized in Figure 3 reveal a story of stalled progress 

and a looming public health crisis. The model's projection shows a TB incidence rate that 

declines marginally from 387 per 100,000 in 2023 to 321 per 100,000 in 2030. This trajectory 

is characterized by a rapid diminishment in the rate of improvement; the most significant drop 

occurs between 2023 and 2024 (22 cases per 100.000), after which the annual declines become 

increasingly shallow. This stagnation indicates that the current suite of interventions has 

reached the limits of its effectiveness and cannot induce the exponential decline required for 

elimination. The apparent improvement in absolute case numbers is also affected by population 

growth, resulting in a persistently high disease burden that continues to fuel community 

transmission. 

 

Table 4. Prediction of TB incidence rate based on the SVE3I3R Model 

Years Total Population Total Infectious Individuals Proportion in 100.000 
2023  281,000,000   1,090,000  387 
2024  283,357,176   1,034,191  365 
2025  285,734,347   995,591  348 
2026  288,131,326   970,717  337 
2027  290,548,016   956,611  329 
2028  292,984,382   950,776  325 
2029  295,440,453   951,112  322 
2030  297,916,303   955,866  321 
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When this projected trajectory is juxtaposed with the linear path required to meet the 

national target of 65 per 100,000, the analysis reveals a profound and growing strategic 

divergence. The target line represents an ambitious. In stark contrast, the model's output shows 

a pathway that begins to diverge almost immediately and evolves into a chasm by 2030. The 

projected incidence for 2030 is not merely above the target; it is nearly five times higher, a clear 

quantitative verdict on the inadequacy of the status quo. This widening gap is not an abstraction 

but a measure of the future morbidity, mortality, and economic cost incurred if policies remain 

unchanged. It underscores a critical failure to translate a high-level political commitment into 

an operational strategy powerful enough to alter the fundamental dynamics of TB transmission 

and progression within the population. 

 

 
Figure 3. Prediction versus target on TB incidence rate in Indonesia from 2023 to 2030 

 

The overall interpretation of these results is that Indonesia's current TB control program, 

while making strides in case detection and treatment for DS-TB, is structurally insufficient to 

alter the fundamental dynamics required for elimination. Our findings align with the concerns 

raised by global reports, such as those from the WHO, which highlight the escalating threat of 

drug-resistant TB in high-burden countries (WHO, 2024). However, they stand in contrast to 

more optimistic linear projections that may not fully account for the non-linear complexities of 

TB transmission, such as relapse and the development of resistance. The divergence can be 

attributed to our model's explicit incorporation of these critical pathways, specifically, the 

transitions between drug resistance classes (γ parameters) and the relapse mechanisms (θ and 

φ parameters). While previous studies in other regions using SVEIR or SEIR frameworks have 

emphasized treatment rate improvements (Dicko et al., 2024; Hajji & Albargi, 2022), our results 

suggest that in the Indonesian context, these gains are being systematically undermined by the 

twin crises of drug resistance and reactivation, a nuance that simpler models may not capture. 

The generalizability of these findings must be considered cautiously. The model is particular 

to the Indonesian epidemiological context, calibrated with local data on population 

demographics, initial compartment sizes, and parameter estimates. Therefore, the precise 

numerical projections are not directly transferable to other countries. However, the model's 

structure and the identified dynamics possess strong theoretical generalizability. The 
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mechanisms driving the results, specifically, how high relapse rates in a large recovered 

population and inadequate treatment leading to explosive drug-resistant TB growth, are likely 

applicable to other high-burden, resource-limited settings with similar healthcare system 

challenges and large LTBI pools. The SVE3I3R framework can serve as a template for analogous 

studies in other countries aiming to evaluate their elimination targets against complex, realistic 

transmission dynamics. 

The primary theoretical implication of this work is the advancement of deterministic 

compartmental modeling for TB. By stratifying the exposed and infectious compartments by 

drug-resistance profile (E₁, E₂, E₃, and I₁, I₂, I₃) and explicitly modeling transitions between 

them (γ parameters), our SVE3I3R model provides a more granular and realistic representation 

of the TB epidemic than traditional SEIR or SVEIR models. Furthermore, explicitly 

incorporating a dual relapse mechanism, both a return to susceptibility (φ) and direct 

reactivation to infectious states (θ), adds significant epidemiological fidelity. This model 

contributes to the theoretical understanding that achieving TB elimination requires 

frameworks that move beyond tracking overall incidence and instead capture the internal shifts 

within the epidemic, particularly the escalating threat of drug resistance. 

This study has several critical implications for future research. First, it underscores the 

necessity of moving from aggregate TB models to those that disaggregate by resistance strain 

to forecast future burdens accurately. Subsequent research should focus on refining the 

parameter estimates for resistance development and relapse through longitudinal cohort 

studies within Indonesia. Second, the model provides a platform for in-silico testing of 

intervention strategies. Future work should employ this SVE3I3R model to conduct cost-

effectiveness analyses of various scenarios, such as the impact of scaling up universal drug 

susceptibility testing (DST), enhancing infection control, or expanding TB Preventive Therapy 

(TPT) to different target groups. Finally, there is a need to integrate spatial heterogeneity or 

agent-based approaches to identify subnational hotspots and effectively tailor interventions. 

For public health practice, the implications are urgent and clear. A "business-as-usual" 

approach focused primarily on diagnosing and treating DS-TB will fail. Practice must pivot to a 

dual-strategy: aggressively containing drug-resistant TB while simultaneously draining the 

latent reservoir (Chaw et al., 2020). This necessitates a massive scale-up of laboratory capacity 

to ensure universal DST for all diagnosed cases, enabling prompt initiation of appropriate 

regimens. Concurrently, a nationwide expansion of TPT, targeting high-risk groups and the vast 

latent pool, is imperative to prevent reactivation. Infection control measures in healthcare 

settings and congregate living environments must be strengthened to break transmission 

chains, especially drug-resistant strains (Marme et al., 2023; Vigenschow et al., 2021). 

At the policy level, these findings serve as a critical evidence base for a fundamental 

overhaul of Indonesia's TB control strategy, as mandated by Presidential Regulation No. 67 of 

2021. Policymakers must recognize that the current trajectory will not meet the 2030 target. 

Policy implications include: (1) Reallocating Resources: Directing significant funding towards 

strengthening the laboratory network for DST and securing sustainable access to shorter, more 

effective regimens for MDR-TB/XDR-TB. (2) Programmatic Expansion: Formulating and 

funding a comprehensive, large-scale TPT rollout policy integrated into primary healthcare. (3) 

Regulatory Action: Enforcing stronger regulations for infection control and mandating rapid 
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molecular diagnostics as the initial test for all TB suspects. This evidence demands that the 

ambitious political commitment be matched with an equally ambitious and evidence-informed 

operational plan. 

This study has several limitations. First, as a deterministic model, it does not account for 

stochastic events, which can influence outbreak dynamics, especially in low-prevalence settings 

nearing elimination. Second, the model assumes homogeneous mixing within the population, 

which may oversimplify complex contact networks and spatial heterogeneity in transmission 

risk across Indonesia's diverse archipelago. Third, several parameters, for instance, for relapse 

(θ) and resistance development (γ), were estimated from international literature or fitted due 

to a lack of robust local data; this could introduce bias. The direction of this potential bias is 

likely towards underestimating the complexity of the epidemic, meaning the actual situation 

may be more challenging than projected. Finally, the model does not incorporate potential 

future advancements in vaccines or therapeutics, which could alter the trajectory if successfully 

deployed before 2030. 

 

D. CONCLUSION AND SUGGESTIONS 

This study's findings show that Indonesia will not achieve the 2030 elimination target of 65 

cases per 100,000 population. Instead, the incidence rate is forecasted to reach 321 per 100,000 

by 2030, nearly five times the national goal. The surge in Multidrug-Resistant (MDR) and 

Extensively Drug-Resistant (XDR) cases, projected to exceed 100,000 cases respectively, 

highlights the critical failure of current control strategies to contain resistant strains. 

Theoretically, this research contributes to the field by demonstrating that incorporating 

detailed resistance stratification (SVE3I3R) significantly alters projection outcomes compared 

to traditional aggregate models. Practical implications suggest that without an urgent shift to 

universal drug susceptibility testing and aggressive preventive therapy, the epidemic will 

persist.  

The findings consistently address the study's primary objective where to project TB 

transmission and assess the 2030 target. The results unequivocally demonstrate that without 

an immediate and paradigm-shifting response that prioritizes the containment of drug-

resistant TB and the prevention of reactivation, the goal of TB elimination in Indonesia will 

remain out of reach. This research delivers a clear and urgent call to action for policymakers 

and public health practitioners. Future research should employ stochastic modeling to account 

for random variation in low-incidence scenarios and incorporate spatial heterogeneity to refine 

these projections further. 
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