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This article discussed about a dynamic analysis of the symbiotic model of 

commensalism and parasitism with harvesting in the commensal population. This 

model is obtained from a modification of the symbiosis commensalism model. This 

modification is by adding a new population, namely the parasite population. 

Furthermore, it will be investigated that the three populations can coexist. The 

analysis carried out includes the determination of all equilibrium points along with 

their existence and local stability along with their stability requirements. From this 

model, it is obtained eight equilibrium points, namely three population extinction 

points, two population extinction points, one population extinction point and three 

extinction points can coexist. Of the eight points, only two points are asymptotically 

stable if they meet certain conditions. Next, a numerical simulation will be 

performed to illustrate the model’s behavior. In this article, a numerical simulation 

was carried out using the RK-4 method. The simulation results obtained support 

the results of the dynamic analysis that has been done previously.  
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A. INTRODUCTION  

Yukalov et al., (2012) described the symbiosis between organisms. The term symbiosis 

describes the relationships that occur between living things with one another. For example, 

symbiosis of parasitism, mutualism, commensalism, neutralism, and symbiosis of amensalism. 

The symbiosis of commensalism is the interaction between living things that is one gain 

(commensal), while the others are neither benefited nor disadvantaged (host). The symbiosis 

of parasitism is an interaction between living things where one benefits (parasites) while the 

other is harmed (host).. An example of a symbiotic interaction of commensalism and parasitism 

is shown in Figure 1 as follows.  
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Figure 1.  Symbiotic Interaction of Comensalism and Parasitism  

 

Figure 1 describes the relationship between the mango tree (host) and orchids 

(commensals) and parasites (parasites) attached to the trunk of the mango tree. These 

interactions can be formed in the mathematical model called a symbiotic mathematical model. 

This model studies in mathematics how symbiotic processes in an ecosystem can be formed in 

systems of ordinary and nonlinear ordinary differential equations (Kenassa Edessa, 2018). 

 Research on the mathematical model of symbiosis has been widely carried out, for example 

in a two-population and three-population symbiosis model. In the symbiosis model, two 

populations include the symbiotic commensalism model (Prasad & Ramacharyulu, 2012), (Sun, 

G. C & Sun, 2013),  (B. Ravindra Reddy, 2013), (XIE et al., 2015), (Wu et al., 2016), (Chen, 

Jinghuang & Wu, 2017), (Chen, 2018a), (Chen, 2018b), (Lin, 2018), (Zhao et al., 2018), (Chen, 

2019), amensalism symbiotic model  (Xie et al., 2016), (Chen, 2018c), (Liu et al., 2018), (Wu, 

2018), (Guan & Chen, 2019), (Su & Chen, 2019), (Wei et al., 2020) and a mutualism symbiotic 

model (Ahmad, 2017). Some of these studies include harvesting in one (Chen, 2019) or both 

populations (Chen, Jinghuang & Wu, 2017), (Chen, 2018c), (Lin, 2018), (Su & Chen, 2019), 

(Ahmad, 2017). In the symbiosis model, there are three populations, which discusses predator-

prey with symbiosis of commensalism (Kumar, N. P. & Ramacharyulu, 2010). Furthermore, the 

model is modified by adding an enemy to the predator and making the third population the 

host, thus forming a symbiotic interaction of amensalism (Kiran, D. R.& Reddy, 2012). Other 

research on the three-population symbiosis model is studying a three-population mathematical 

model between symbiosis of commensalism and parasitism  using the Monod response function 

(Kenassa Edessa, 2018).  

Based on the description above, this study will modify the symbiotic commensalism model 

by harvesting Michaelis-Menten in commensal populations (Chen, 2019) by adding a new 

population, namely the parasite population. The results obtained from this article are the 

equilibrium point, the conditions of presence and local stability at the equilibrium point. 

Furthermore, a numerical simulation is used to verify the results of the dynamic analysis. 
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B. METHODS 

The research method used in this study consists of several stages as follows. 

1. Specifying the Model 

The model studied in this study is derived from the symbiosis commensalism model with 

Michaelis-Menten harvesting in the commensal population conducted by (Chen, 2019). The 

model is as follows. 
𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑦

𝑘2
),                                    

    (1) 

where 𝑥(𝑡) and 𝑦(𝑡) denote the commensal population and host population, respectively. All 

parameters used in this model are positive. The definitions of these parameters are: 𝑟1 and 𝑟2 

represent the intrinsic growth of 𝑥 and 𝑦. 𝑘1 and 𝑘2show the carrying capacities of 𝑥 and 𝑦. The 

parameter 𝑎  is the interaction parameter between 𝑥  and 𝑦 . The parameter 𝐸  is the fishing 

effort parameter used to harvest, 𝑞 is the catching power coefficient and 𝑚1, 𝑚2 are the suitable 

constants. The model will be modified. Modification of the model is by adding a new population, 

namely the parasite population. This parasite population is detrimental to the host population. 

 

2. Dynamic Analysis and Numerical Simulation 

In dynamic analysis, it uses the definition and theorem as follows. 

Definition 1. (Trahan et al., 1979) The point �⃗�∗  is said to be the equilibrium point of the 

equation 
𝑑�⃗�

𝑑𝑡
= 𝑓(�⃗�), �⃗� ∈ ℝ𝑛 if it satisfies the 

𝑑�⃗�

𝑑𝑡
= 0⃗⃗ condition. 

Theorem 1. (Trahan et al., 1979) Suppose that the eigenvalue of the Jacobi matrix 𝐷𝑓(�⃗�∗) are 

(𝜆1, 𝜆2, dan 𝜆3), that the stability criterion is: 

a. Asymtotically stable, if all the eigenvalue of the Jacobi matrix 𝐷𝑓(�⃗�∗) have a negative 

real part or 𝑅𝑒(𝜆𝑖) < 0, ∀𝑖 = 1, 2, 3. 

b. Unstable, if there is an eigenvalue in the Jacobi matrix 𝐷𝑓(�⃗�∗) has a positive real part or 

𝑅𝑒(𝜆𝑖) > 0, ∃𝑖 = 1, 2, 3. 

 

The numerical simulation section in this article used the Runge Kutta order 4 (RK-4) method 

and the Matlab software (R2015b). 

 

 

C. RESULT AND DISCUSSION 

1.  Dynamical Analysis  

Mathematical model investigated in this paper is a modification of model (1) by adding one 

species, namely a parasite species, resulting in the following model. 
𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
,

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑦

𝑘2
− 𝑏

𝑧

𝑘2
),                       

𝑑𝑧

𝑑𝑡
= 𝑟3𝑧 (1 −

𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
),                        

      (2) 
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where 𝑟3  represents the intrinsic growth of 𝑧  and 𝑘3  show the carrying capacities of  𝑧 . The 

parameter 𝑏 𝑎𝑛𝑑 𝑐 is the interaction parameter between 𝑦 and 𝑧. 

 

Based on Definition 1, the equilibrium point of the system of equation (2) can be obtained by 

solving this equation  
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝑧

𝑑𝑡
= 0, 

so that system (2) becomes 

𝑟1𝑥 (1 −
𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
= 0,     (3) 

𝑟2𝑦 (1 −
𝑦

𝑘2
− 𝑏

𝑧

𝑘2
) = 0,     (4) 

𝑟3𝑧 (1 −
𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
) = 0.      (5) 

Equation (3) can be written in the form 

𝑥 = 0                   (3.a) 

or 

𝑟1 (1 −
𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸

𝑚1𝐸+𝑚2𝑥
= 0.     (3.b) 

The solution of equation (3.b) is 

𝑥∗ =
−𝐵1±√𝐵1

2−4𝐴1𝐶1

2𝐴1
. 

Equation (4) can be written in the form 

𝑦 = 0                   (4.a) 

or 

1 −
𝑦

𝑘2
− 𝑏

𝑧

𝑘2
= 0.      (4.b) 

The solution of equation (4.b) is 

𝑦∗ = 𝑘2 − 𝑏𝑧∗. 

Equation (5) can be written in the form 

𝑧 = 0                   (5.a) 

or 

1 −
𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
= 0.      (5.b) 

The solution of equation (5.b) is 

𝑧∗ = 𝑘3 + 𝑐𝑦∗. 

Theorem 2. The system of equation (2) has eight solutions, namely 𝑇𝑖, 𝑖 = 1,2, … ,8, then 𝑇𝑖 ≥

0 is the equilibrium point of the system of equation (2) if it meets the conditions of existence. 

The eight points of equilibrium are as follows. 

a. If x∗ = y∗ = z∗ = 0 then you will get the equilibrium point T0 = (0,0,0). 

b. If x∗ = y∗ = 0 then you will get the equilibrium point T1 = (0,0, k3). 

c. If x∗ = z∗ = 0 then you will get the equilibrium point T2 = (0, k2, 0). 

d. If y∗ = z∗ = 0 then you will get the equilibrium point T3 = (x3
∗, 0,0). 

e. If x∗ = 0 then you will get the equilibrium point T4 = (0,
k2−bk3

1+bc
,
k3+ck2

1+bc
). 

f. If y∗ = 0 then you will get the equilibrium point T5 = (x5
∗, 0, k3). 

g. If z∗ = 0 then you will get the equilibrium point T6 = (x∗
6, k2, 0).  
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h. If 𝑥∗ = 𝑥∗
7, 𝑦

∗ = 𝑦∗
7
 𝑎𝑛𝑑 𝑧∗ = 𝑧∗

7 then you will get the equilibrium point 

        𝑇7 = (𝑥∗
7, 𝑦

∗
7
, 𝑧∗

7). 

Proof. 

a. 𝑇0 = (0,0,0) is obtained from a combination of equations (3.a), (4.a) and (5.a). 

b. 𝑇1 = (0,0, 𝑘3) is obtained from a combination of equations (3.a), (4.a) and (5.b), so that 

will be found is the value of 𝑧∗ = 𝑘3. 

c. 𝑇2 = (0, 𝑘2, 0) is obtained from a combination of equations (3.a), (4.b) and (5.a), so that 

will be found is the value of 𝑦∗ = 𝑘2. 

d. 𝑇3 = (𝑥3
∗, 0,0) is obtained from a combination of equations (3.b), (4.a) and (5.a). If 𝐷1 =

𝐵1
2 − 4𝐴1𝐶1 ≥ 0, then you will get 𝑥∗ = 𝑥3

∗  which is real positive. Where, 𝐴1 = 𝑟1𝑚2, 

𝐵1 = (𝑚1𝐸 − 𝑚2𝑘1)𝑟1  and 𝐶1 = (𝑞 − 𝑟1𝑚1)𝑘1𝐸.  There are several possible values for 

𝑥3
∗ to be positive real as follows. 

i. If 𝐷1 = 0, then 𝑇3 is the two positive twin roots, i.e. 

𝑇3+
∗ =

−𝐵1

2𝐴1
, 

with the value 𝐵1 < 0 or it can be written 
𝑚1

𝑚2
<

𝑘1

𝐸
. 

ii. If 𝐷1 > 0, then 𝑇3 is the one positive roots, i.e. 

𝑇3+
∗ =

−𝐵1+√𝐷1

2𝐴1
, 

with the value 𝐶1 < 0  or it can be written 𝑟1 >
𝑞

𝑚1
. 

iii. If 𝐷1 > 0, then 𝑇3 is the one positive roots, i.e. 

𝑇3+
∗ =

−𝐵1

𝐴1
, 

with the value 𝐶1 = 0 and 𝐵1 < 0  or it can be written 𝑟1 =
𝑞

𝑚1
 and  

𝑚1

𝑚2
<

𝑘1

𝐸
. 

iv. If 𝐷1 > 0, then 𝑇3 is the two positive roots, i.e. 

𝑇3±
∗ =

−𝐵1±√𝐷1

2𝐴1
, 

with the value 𝐶1 > 0  and 𝐵1 < 0 or it can be written 𝑟1 >
𝑞

𝑚1
 and  

𝑚1

𝑚2
<

𝑘1

𝐸
. 

e. 𝑇4 = (0,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
)  is obtained from a combination of equations (3.a), (4.b) and 

(5.b), so that will be found is the value of 𝑦∗ =
𝑘2−𝑏𝑘3

1+𝑏𝑐
 and 𝑧∗ =

𝑘3+𝑐𝑘2

1+𝑏𝑐
 with the condition 

of existence 𝑏 <
𝑘2

𝑘3
. 

f. 𝑇5 = (𝑥5
∗, 0, 𝑘3) is obtained from a combination of equations (3.b), (4.a) and (5.b) so that 

will be found is the value of 𝑥∗ = 𝑥5
∗ and 𝑧∗ = 𝑘3. If 𝐷2 = 𝐵2

2 − 4𝐴2𝐶2 ≥ 0, then you will 

get 𝑥∗ = 𝑥5
∗  which is real positive. Where, 𝐴2 = 𝑟1𝑚2, 𝐵2 = (𝑚1𝐸 − 𝑚2𝑘1)𝑟1 and 𝐶2 =

(𝑞 − 𝑟1𝑚1)𝑘1𝐸. There are several possible values for 𝑥5
∗ to be positive real as follows. 

i. If 𝐷2 = 0, then 𝑇5 is the two positive twin roots, i.e. 

𝑇5+
∗ =

−𝐵2

2𝐴2
, 

with the value 𝐵2 < 0 or it can be written 
𝑚1

𝑚2
<

𝑘1

𝐸
. 

ii. If 𝐷2 > 0, then 𝑇5 is the one positive roots, i.e. 



198  |  JTAM (Jurnal Teori dan Aplikasi Matematika) | Vol. 5, No. 1, April 2021, pp. 193-204  

 

 

𝑇5+
∗ =

−𝐵2+√𝐷2

2𝐴2
, 

with the value 𝐶2 < 0  or it can be written 𝑟1 >
𝑞

𝑚1
. 

iii. If 𝐷2 > 0, then 𝑇5 is the one positive roots, i.e. 

𝑇5+
∗ =

−𝐵2

𝐴2
, 

with the value 𝐶2 = 0 and 𝐵2 < 0  or it can be written 𝑟1 =
𝑞

𝑚1
 and  

𝑚1

𝑚2
<

𝑘1

𝐸
. 

iv. If 𝐷2 > 0, then 𝑇5 is the two positive roots, i.e. 

𝑇5±
∗ =

−𝐵2±√𝐷2

2𝐴2
, 

with the value 𝐶2 > 0  and 𝐵2 < 0 or it can be written 𝑟1 >
𝑞

𝑚1
 and  

𝑚1

𝑚2
<

𝑘1

𝐸
. 

g. 𝑇6 = (𝑥∗
6, 𝑘2, 0) is obtained from a combination of equations (3.b), (4.b) and (5.a) so that 

will be found is the value of 𝑥∗ = 𝑥6
∗  and 𝑦∗ = 𝑘2. If 𝐷3 = 𝐵3

2 − 4𝐴3𝐶3 ≥ 0, then you 

will get 𝑥∗ = 𝑥6
∗  which is real positive. Where, 𝐴3 = 𝑟1𝑚2,  𝐵3 = (𝑚1𝐸 − 𝑚2𝑘1 −

𝑎𝑚2𝑘2)𝑟1 and 𝐶3 = ((𝑞 − 𝑟1𝑚1)𝑘1 − 𝑎𝑟1𝑚1𝑘2)𝐸. There are several possible values for 

𝑥6
∗ to be positive real as follows. 

i. If 𝐷3 = 0, then 𝑇6 is the two positive twin roots, i.e. 

𝑇6+
∗ =

−𝐵3

2𝐴3
, 

with the value 𝐵3 < 0 or it can be written 
𝑚1

𝑚2
<

𝑘1

𝐸
. 

ii. If 𝐷3 > 0, then 𝑇6 is the one positive roots, i.e. 

𝑇6+
∗ =

−𝐵3+√𝐷3

2𝐴3
, 

with the value 𝐶3 < 0  or it can be written 𝑟1 >
𝑞

𝑚1
. 

iii. If 𝐷3 > 0, then 𝑇6 is the one positive roots, i.e. 

𝑇6+
∗ =

−𝐵3

𝐴3
, 

with the value 𝐶3 = 0 and 𝐵3 < 0  or it can be written 𝑟1 =
𝑞

𝑚1
 and  

𝑚1

𝑚2
<

𝑘1

𝐸
. 

iv. If 𝐷3 > 0, then 𝑇6 is the two positive roots, i.e. 

𝑇6±
∗ =

−𝐵3±√𝐷3

2𝐴3
, 

with the value 𝐶3 > 0  and 𝐵3 < 0 or it can be written 𝑟1 >
𝑞

𝑚1
 and  

𝑚1

𝑚2
<

𝑘1

𝐸
. 

h. 𝑇7 = (𝑥∗
7,

𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
) is obtained from a combination of equations (3.b), (4.b) and 

(5.b) so that will be found is the value of 𝑥∗ = 𝑥∗
7, 𝑦∗ =

𝑘2−𝑏𝑘3

1+𝑏𝑐
 and 𝑦∗ =

𝑘3+𝑐𝑘2

1+𝑏𝑐
. If 𝐷4 =

𝐵4
2 − 4𝐴4𝐶4 ≥ 0 , then you will get 𝑥∗ = 𝑥7

∗  which is real positive. Where, 𝐴4 =

(1 + 𝑏𝑐)𝑟1𝑚2 > 0,  𝐵4 = ((1 + 𝑏𝑐)(𝑚1𝐸 − 𝑚2𝑘1) + (𝑏𝑘3 − 𝑘2)𝑎𝑚2)𝑟1  and 𝐶4 = ((1 +

𝑏𝑐)(𝑞 − 𝑟1𝑚1)𝑘1 + (𝑏𝑘3 − 𝑘2)𝑎𝑟1𝑚1)𝐸. There are several possible values for 𝑥7
∗ to be 

positive real as follows. 

i. If 𝐷4 = 0, then 𝑇7 is the two positive twin roots, i.e. 

𝑇7+
∗ =

−𝐵4

2𝐴4
, 
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with the value 𝐵4 < 0 or it can be written 
𝑚1𝐸−𝑚2𝑘1

𝑎𝑚2
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
. 

ii. If 𝐷4 > 0, then 𝑇7 is the one positive roots, i.e. 

𝑇7+
∗ =

−𝐵4+√𝐷4

2𝐴4
, 

with the value 𝐶4 < 0  or it can be written 
𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
. 

iii. If 𝐷4 > 0, then 𝑇7 is the one positive roots, i.e. 

𝑇7+
∗ =

−𝐵4

𝐴4
, 

with the value 𝐶4 = 0  and 𝐵4 < 0   or it can be written 
𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
=

𝑘2−𝑏𝑘3

1+𝑏𝑐
 and  

𝑚1𝐸−𝑚2𝑘1

𝑎𝑚2
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
. 

iv. If 𝐷4 > 0, then 𝑇7 is the two positive roots, i.e. 

𝑇7±
∗ =

−𝐵4±√𝐷4

2𝐴4
, 

with the value 𝐶4 > 0   and 𝐵4 < 0  or it can be written 
𝑚1𝐸−𝑚2𝑘1

𝑎𝑚2
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
<

𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
. 

 

The local stability analysis is performed by using Jacobian matrices of (2) evaluated at the 

equilibrium points, namely   

𝐽(𝑥∗, 𝑦∗, 𝑧∗) =

[
 
 
 
 
 
 𝑟1 −

2𝑟1𝑥
∗

𝑘1
+

𝑎𝑟1𝑦
∗

𝑘1
−

𝑞𝑚1𝐸
2

(𝑚1𝐸 + 𝑚2𝑥∗)2

𝑎𝑟1𝑥
∗

𝑘1
0

0 𝑟2 −
2𝑟2𝑦

∗

𝑘2

−𝑏𝑟2𝑦
∗

𝑘2

0
𝑐𝑟3𝑧

∗

𝑘3
𝑟3 −

2𝑟3𝑧
∗

𝑘3 ]
 
 
 
 
 
 

. 

Jacobian matrices at 𝑇0 = (0,0,0) is 

𝐽(𝑇0) = 𝐽(0,0,0) = [

𝑟1 −
𝑞

𝑚1
0 0

0 𝑟2 0
0 0 𝑟3

], 

which has eigenvalues 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = 𝑟2 > 0, and 𝜆3 = 𝑟3 > 0. Based on Theorem 1, 𝑇0 is 

unstable. 

Jacobian matrices at 𝑇1 = (0,0, 𝑘3) is 

𝐽(𝑇1) = [

𝑟1 −
𝑞

𝑚1
0 0

0 𝑟2 0
0 𝑐𝑟3 −𝑟3

], 

with eigenvalues 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = 𝑟2 > 0 , and  𝜆3 = 𝑟3 > 0 . Based on Theorem 1, 𝑇1 is 

unstable. 

 

Jacobian matrices at 𝑇2 = (0, 𝑘2, 0) is 
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𝐽(𝑇2) = [

𝑟1 −
𝑞

𝑚1
0 0

0 −𝑟2 −𝑏𝑟2
0 0 𝑟3

], 

with eigenvalues 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = −𝑟2 < 0 , and  𝜆3 = 𝑟3 > 0 . Based on Theorem 1, 𝑇2 is 

unstable. 

Jacobian matrices at 𝑇3 = (𝑥∗
3, 0,0) is 

𝐽(𝑇3) =

[
 
 
 𝑟1 −

2𝑟1𝑥
∗
3

𝑘1
−

𝑞𝑚1𝐸
2

(𝑚1𝐸 + 𝑚2𝑥∗
3)2

𝑎𝑟1𝑥
∗
3

𝑘1
0

0 𝑟2 0
0 0 𝑟3]

 
 
 

, 

with eigenvalues 𝜆1 = 𝑟1 −
2𝑟1𝑥∗

3

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥∗
3)2

, 𝜆2 = 𝑟2 > 0 , and  𝜆3 = 𝑟3 > 0 . Based on 

Theorem 1, 𝑇3 is unstable. 

Jacobian matrices at 𝑇4 = (0,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
) is 

𝐽(𝑇4) =

[
 
 
 
 
 
 𝑟1 +

𝑎𝑟1(𝑘2 − 𝑏𝑘3)

𝑘1(1 + 𝑏𝑐)
−

𝑞

𝑚1
0 0

0 𝑟2 −
2𝑟2(𝑘2 − 𝑏𝑘3)

𝑘2(1 + 𝑏𝑐)

−𝑏𝑟2(𝑘2 − 𝑏𝑘3)

𝑘2(1 + 𝑏𝑐)

0
𝑐𝑟3(𝑘3 + 𝑐𝑘2)

𝑘3(1 + 𝑏𝑐)
𝑟3 −

2𝑟3(𝑘3 + 𝑐𝑘2)

𝑘3(1 + 𝑏𝑐) ]
 
 
 
 
 
 

, 

which resulted in the following characteristic equation. 

[𝜆2 + 𝐵𝜆 + 𝐶] (𝑟1 +
𝑎𝑟1(𝑘2−𝑏𝑘3)

𝑘1(1+𝑏𝑐)
−

𝑞

𝑚1
− 𝜆) = 0. 

where 

𝐵 =
1

𝑘2𝑘3(1 + 𝑏𝑐)
(𝑘2𝑘3(𝑟2 + 𝑟3) − 𝑐𝑟3𝑘2(𝑏𝑘3 − 2𝑘2) − 𝑏𝑟2𝑘3(𝑐𝑘2 + 2𝑘3)) 

and  

𝐶 =
𝑟2𝑟3

𝑘2𝑘3(1 + 𝑏𝑐)2
((1 − 5𝑏𝑐)𝑘2𝑘3 + (2 − 𝑏𝑐)𝑐𝑘2

2 + (𝑏𝑐 − 2)𝑏𝑘3
2).  

Since existence condition of 𝑇4 needs 𝑟1 +
𝑎𝑟1(𝑘2−𝑏𝑘3)

𝑘1(1+𝑏𝑐)
−

𝑞

𝑚1
< 0, it is clear that both B and C are 

positive. Hence all of the eigenvalue are negative. It lead to the conclusion that 𝑇4  is 

asymptotically stable.  

Jacobian matrices at 𝑇5 = (𝑥∗
5, 0, 𝑘3) is 

𝐽(𝑇5) =

[
 
 
 𝑟1 −

2𝑟1𝑥
∗
5

𝑘1
−

𝑞𝑚1𝐸
2

(𝑚1𝐸 + 𝑚2𝑥∗
5)2

𝑎𝑟1𝑥
∗
5

𝑘1
0

0 𝑟2 0
0 𝑐𝑟3 −𝑟3]

 
 
 

, 

with eigenvalues 𝜆1 = 𝑟1 −
2𝑟1𝑥∗

5

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥∗
5)2

, 𝜆2 = 𝑟2 > 0 , and  𝜆3 = −𝑟3 < 0 . Based on 

Theorem 1, 𝑇5 is unstable. 

Jacobian matrices at 𝑇6 = (𝑥∗
6, 𝑘2, 0) is 
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𝐽(𝑇6) =

[
 
 
 𝑟1 −

2𝑟1𝑥
∗
6

𝑘1
+

𝑎𝑟1𝑘2

𝑘1
−

𝑞𝑚1𝐸
2

(𝑚1𝐸 + 𝑚2𝑥∗
6)2

𝑎𝑟1𝑥
∗
6

𝑘1
0

0 −𝑟2 −𝑏𝑟2
0 0 𝑟3 ]

 
 
 

, 

with eigenvalues 𝜆1 = 𝑟1 −
2𝑟1𝑥∗

6

𝑘1
+

𝑎𝑟1𝑘2

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥∗
6)2

, 𝜆2 = −𝑟2 < 0, and 𝜆3 = 𝑟3 > 0. Based 

on Theorem 1, 𝑇6 is unstable. 

 

Finally, so that jacobian matrices at 𝑇7 = (𝑥∗
7,

𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
) is 

𝐽(𝑇7) =

[
 
 
 
 𝑟1 −

2𝑟1𝑥∗
7

𝑘1
+

𝑎𝑟1(𝑘2−𝑏𝑘3)

𝑘1(1+𝑏𝑐)
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥∗
7)2

𝑎𝑟1𝑥∗
7

𝑘1
0

0 𝑟2 −
2𝑟2(𝑘2−𝑏𝑘3)

𝑘2(1+𝑏𝑐)

−𝑏𝑟2(𝑘2−𝑏𝑘3)

𝑘2(1+𝑏𝑐)

0
𝑐𝑟3(𝑘3+𝑐𝑘2)

𝑘3(1+𝑏𝑐)
𝑟3 −

2𝑟3(𝑘3+𝑐𝑘2)

𝑘3(1+𝑏𝑐) ]
 
 
 
 

, 

with the following characteristic equation.  

[𝜆2 + 𝐵𝜆 + 𝐶] (𝑟1 −
2𝑟1𝑥

∗
7

𝑘1
+

𝑎𝑟1(𝑘2 − 𝑏𝑘3)

𝑘1(1 + 𝑏𝑐)
−

𝑞𝑚1𝐸
2

(𝑚1𝐸 + 𝑚2𝑥∗
7)2

− 𝜆) = 0, 

where 

𝐵 =
1

𝑘2𝑘3(1 + 𝑏𝑐)
(𝑘2𝑘3(𝑟2 + 𝑟3) − 𝑐𝑟3𝑘2(𝑏𝑘3 − 2𝑘2) − 𝑏𝑟2𝑘3(𝑐𝑘2 + 2𝑘3)) 

and  

𝐶 =
𝑟2𝑟3

𝑘2𝑘3(1 + 𝑏𝑐)2
((1 − 5𝑏𝑐)𝑘2𝑘3 + (2 − 𝑏𝑐)𝑐𝑘2

2 + (𝑏𝑐 − 2)𝑏𝑘3
2).  

Since existence condition of 𝑇7 needs 𝑟1 −
2𝑟1𝑥∗

7

𝑘1
+

𝑎𝑟1(𝑘2−𝑏𝑘3)

𝑘1(1+𝑏𝑐)
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥∗
7)2

< 0, it is clear that 

both B and C are positive. Hence all of the eigenvalues are negative. Based on Theorem 1, 𝑇7 is 

asymptotically stable.  

 

2. Numerical Simulation 

To illustrate the dynamical analysis, we perform two simulations, by choosing the parameter 

values as folows. 𝑟1 = 𝑟2 = 𝑟3 = 𝑎 = 𝑐 = 𝐸 = 𝑘1 = 𝑘3 = 𝑚2 = 1, 𝑏 = 0.1, and 𝑘2 = 𝑚1 = 2. In 

the first simulation we take 𝑞 = 1, while in the second simulation we take 𝑞 = 7. The first set 

of parameters satisfies condition 𝑘2 > 𝑏𝑘3 , while the second one satisfies condition 𝑘2 >

𝑏𝑘3 𝑎𝑛𝑑 
𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
. 

The first simulation is addressed to show situation when equilibrium point 𝑇4 =

(0,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
) = (0,1.7,2.7) is asymptotically stable while 𝑇7 does not exist since 

𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
>

𝑘2−𝑏𝑘3

1+𝑏𝑐
. The second simulation is intended to show a situation when the equilibrium 

point 𝑇7 = (2.5,1.7,2.7)  exists and is stable while 𝑇4 is unstable because 
𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
. 

Starting from several initial values, it can be shown in Figure 2 that all paths in the simulation 

go to the equilibrium point 𝑇4. These numerical results are consistent with the results of the 

analysis. The results of the second numerical simulation presented in Figure 3 show that when 
𝑘1(𝑞−𝑟1𝑚1)

𝑎𝑟1𝑚1
<

𝑘2−𝑏𝑘3

1+𝑏𝑐
 both equilibrium points 𝑇4and 𝑇7 exist but 𝑇4 is no longer stable because all 
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paths starting from several initial values tend to be 𝑇7. This means that these results are in 

accordance with the results of the analysis which states that 𝑇7 is locally asymptotically stable. 

 

 

Figure 2.  Numeric Simulations when  
k1(q−r1m1)

ar1m1
>

k2−bk3

1+bc
 

 

 

Figure 3.  Numeric Simulations when  
k1(q−r1m1)

ar1m1
<

k2−bk3

1+bc
 

 

 

D. CONCLUSION AND SUGGESTIONS 

The model consist of three population, namely commensal population, host population, and 

parasite population.  The dynamic analysis in this research produced eight equilibrium points 

with their existenceand stability properties.  𝑇4 and 𝑇7 are asymptotically stable if they meet 

the predetermined stability conditions, while the other points are always unstable. From 𝑇4, it 

can be interpreted that the host species population and parasites will never become extinct, 

while 𝑇7 can be interpreted that the three populations can coexist. Based on the results of the 

numerical simulation performed, it showed a supportive behavior with the analysis carried out. 

From the first simulation with the parameter values used, it showed that the graph is 

converging towards 𝑇4, while from the second simulation with the parameter values used, it 

showed that the graph is converging towards 𝑇7. For further research, the researchers advise 

to analyse this model using a discrete dynamic system and then compare the both results. 
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