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This study discusses the dynamical analysis of the symbiosis commensalism and 
parasitism models in four populations with Michaelis-Menten type harvesting in 
the first commensal population. This model is formed from a construction of the 
symbiotic model of commensalism and parasitism by harvesting the commensal 
population. This construction is by adding a new population, namely the second 
commensal population. Furthermore, it will be investigated that the four 
populations can coexist. The first analysis is to identify the conditions of existence 
at all equilibrium points along with the conditions for their existence and local 
stability around the equilibrium point along with the stability requirements. From 
this model, it is obtained sixteen points of equilibrium, namely one point of 
extinction in the four populations, four points of extinction in all three populations, 
six points of extinction in both populations, four points of extinction in one 
population and one point where the four populations can coexist. Of the sixteen 
points, only four points can be asymptotically stable if they meet the stability 
conditions that have been determined. Finally, a numerical simulation is performed 
to describe the model behavior. In this study, the method used in numerical 
simulation is the RK-4 method. The numerical simulation results that have been 
obtained support the dynamical analysis results that have been carried out 
previously. 
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——————————      —————————— 

 
 

A. INTRODUCTION  

Symbiosis, namely the relationship between living things. Symbiosis is divided into four, 

namely parasitism, mutualism, commensalism, amensalism and neutralism. Symbiosis of 

commensalism is an relationship between living things where one does not benefit or is harmed 

(the host) while the other benefits (commensal). In this case, for example, orchids and ferns 

with mango trees. The orchids and ferns benefit from living on the mango tree, while the mango 

tree does not get any influence. Furthermore, symbiosis of parasitism is an relationship 

between living things where one is harmed (the host) while the other is benefited (the parasite). 

In this case, for example, parasite plants with mango trees. The parasite plant gets food from 

the mango tree, while the mango tree feels disadvantaged (Yukalov et al., 2012).  
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The dynamics of the symbiotic model has become one of the important topics in 

mathematics. In 1838, Pierre Verhulst introduced the logistics model for the first time. This is 

due to the fact that the population is too large, so a process of limitation must be carried out 

(John et al., 2008). In (Puspitasari & Kusumawinahyu, 2021) research, a logistic model was used 

to describe the commensal, parasite, and host growth. (Puspitasari & Kusumawinahyu, 2021) 

also introduced harvesting with the Michaelis-Menten type. Harvesting of the Michaelis-

Menten type is harvesting with a saturated model or with a saturation point (Gupta et al., 2012), 

(Gupta & Chandra, 2013), (Hu & Cao, 2017),(Saha et al., 2018), (W. Liu & Jiang, 2018),(Y. Liu et 

al., 2018), (Chen, 2019),(Fattahpour et al., 2019), (Satar & Naji, 2019),(Xue et al., 2019), (Lai et 

al., 2020),(Zuo et al., 2020). The study of the symbiotic model continues to develop by adding 

various assumptions to make the model more realistic and complex. These developments 

include using various response functions (John et al., 2008), (Sun et al., 2012), (Ahmed Buseri 

Ashine et al., 2017), (Ma et al., 2017), (PK & S, 2017), (Kenassa Edessa, 2018), (Pavan Kumar et 

al., 2018), (Sarkar et al., 2020), the Alle effect (Ongun & Ozdogan, 2017), (Chen, 2018), (Ye et 

al., 2019), (Wei et al., 2020) etc. This causes the solution not easy to determine analytically, so 

a numerical approach is needed. One of the numerical approaches used to find solutions from 

a continuous model is to uses the Runge Kutta method (Yang & Shen, 2015), (Paul et al., 2016), 

(Stephen Olaniyan et al., 2020). 

Based on the description above, this study will construct the symbiotic commensalism model 

by harvesting the commensal population in the study (Puspitasari & Kusumawinahyu, 2021). 

The construction is by adding the second commensal population. In this article, we produce the 

equilibrium point and the conditions of existence and local stability at the equilibrium point 

and their conditions. Finally, a numerical simulation is used to verify the dynamic analysis 

results. 

 

 

B. METHODS 

This study uses a research method that consists of the following stages. 

1. Specifying the Model 

The model in this study was obtained from the symbiosis commensalism model with 

harvesting in the commensal population carried out by (Puspitasari & Kusumawinahyu, 2021). 

The model is 
𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
,   

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑦

𝑘2
− 𝑏

𝑧

𝑘2
),                        

𝑑𝑧

𝑑𝑡
= 𝑟3𝑧 (1 −

𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
),                           

                      

    (1) 

with 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) interprets the first commensal population, host population, and 

parasite population. All parameters used are not negative. 𝑟1, 𝑟2, and 𝑟3  interpret the intrinsic 

growth of 𝑥, 𝑦, and 𝑧. 𝑘1, 𝑘2, and 𝑘3 interpret the carrying capacities of 𝑥, 𝑦, and 𝑧. The parameter 

𝑎 is the relationship between 𝑥 and 𝑦. The parameter 𝑏 𝑎𝑛𝑑 𝑐 are the relationship between 𝑦 

and 𝑧. The parameter 𝐸 is a fishing business used for harvest, 𝑞 is the catching power coefficient 
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and 𝑚1, 𝑚2 are the suitable constants. The model will be constructed. Constructed of the model 

is by adding the second commensal population. This second commensal population does not 

harm other populations. 

 

2. Dynamic Analysis and Numerical Simulation 

The definition and theorem used in the dynamical analysis of this research are as follows. 

Definition 1. The point �⃗�∗ can be said to be the equilibrium point of the equation 
𝑑�⃗�

𝑑𝑡
= �⃗�(�⃗�), �⃗� ∈

ℝ𝑛 if it meets the condition 
𝑑�⃗�

𝑑𝑡
= 0⃗⃗ (Trahan et al., 1979). 

Theorem 1. If the eigenvalue of the Jacobi matrix 𝐷𝑔(𝑝∗) are (𝜆1, 𝜆2, 𝜆3, dan 𝜆4), then there 

are several local stability criterion as follows:  

a. If all the eigenvalue in the Jacobi matrix 𝐷𝑔(�⃗�∗) have a negative real part or 𝑅𝑒(𝜆𝑖) <

0, ∀𝑖 = 1, 2, 3, then the equilibrium point is said to be asymptotically stable. 

b. If there is an eigenvalue in the Jacobi matrix 𝐷𝑔(�⃗�∗) has a positive real part or 𝑅𝑒(𝜆𝑖) >

0, ∃𝑖 = 1, 2, 3, then the equilibrium point is said to be unstable. 

(Trahan et al., 1979) 

 

The numerical simulation in this article uses the Runge Kutta order 4 (RK-4) method and 

uses the Matlab software (R2015b). 

 

C. RESULT AND DISCUSSION 

1.  Dynamical Analysis  

The symbiotic mathematical model in this paper is a construction of model (1) by adding the 

second commensal population so that the model becomes as follows. 
𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
,   

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑦

𝑘2
− 𝑏

𝑧

𝑘2
),                        

𝑑𝑧

𝑑𝑡
= 𝑟3𝑧 (1 −

𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
),                         

𝑑𝑝

𝑑𝑡
= 𝑟4𝑝 (1 −

𝑝

𝑘4
+ 𝑑

𝑦

𝑘4
),                         

      (2) 

 

where 𝑟4 is the intrinsic growth of 𝑝 and 𝑘4 is the carrying capacities of  𝑝.  𝑑 show the 

relationship between 𝑦 and 𝑝. 

 

By solving the following equation  

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
=

𝑑𝑧

𝑑𝑡
=

𝑑𝑝

𝑑𝑡
= 0, 

so that system (2) becomes 

𝑟1𝑥 (1 −
𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸𝑥

𝑚1𝐸+𝑚2𝑥
= 0,     (3) 

𝑟2𝑦 (1 −
𝑦

𝑘2
− 𝑏

𝑧

𝑘2
) = 0,     (4) 
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𝑟3𝑧 (1 −
𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
) = 0,      (5) 

𝑟4𝑝 (1 −
𝑝

𝑘4
+ 𝑑

𝑦

𝑘4
) = 0.      (6) 

 

The (3) equation has the following solution  

𝑥 = 0                   (3.a) 

or 

𝑟1 (1 −
𝑥

𝑘1
+ 𝑎

𝑦

𝑘1
) −

𝑞𝐸

𝑚1𝐸+𝑚2𝑥
= 0,     (3.b) 

then 

𝑥∗ =
−𝐵±√B2−4AC

2A
. 

The (4) equation has the following solution  

𝑦 = 0                   (4.a) 

or 

1 −
𝑦

𝑘2
− 𝑏

𝑧

𝑘2
= 0,     (4.b) 

then 

𝑦∗ = 𝑘2 − 𝑏𝑧∗. 

The (5) equation has the following solution  

𝑧 = 0                   (5.a) 

or 

1 −
𝑧

𝑘3
+ 𝑐

𝑦

𝑘3
= 0,      (5.b) 

then 

𝑧∗ = 𝑘3 + 𝑐𝑦∗. 

The (6) equation has the following solution  

𝑝 = 0                   (6.a) 

or 

1 −
𝑝

𝑘4
+ 𝑑

𝑦

𝑘4
= 0,      (6.b) 

then  

𝑝∗ = 𝑘4 + 𝑑𝑦∗. 

 

From the solution of equation (3)- (6) there are sixteen equilibrium point exist, if they satisfy 

Theorem 1 as follows. 

 

Theorem 2. Conditions for the existence of an equilibrium point 

If the solution to the system of equation (2) is 𝑇𝑖, 𝑖 = 0,1,2, … ,15, then the equilibrium point of 

the system of equation (2) which has the following terms of existence. 

 

a. 𝑇𝑖, 𝑖 = 0,1, … ,5 are the equilibrium point in the system of equation (2). 

b. 𝑇6 and 𝑇7 are the equilibrium point in the system of equation (2) if 𝑘2 > 𝑏𝑘3. 
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c. 𝑇8, 𝑇9, 𝑇10, and 𝑇12 are the equilibrium point in the system of equation (2) if 𝐷1 = 𝐵1
2 −

4𝐴1𝐶1 ≥ 0, then will get 𝑥𝑎
∗ = 𝑥8

∗ = 𝑥9
∗ = 𝑥10

∗ = 𝑥12
∗. Where, 𝐴1 = 𝑟1𝑚2, 𝐵1 = (𝑚1𝐸 −

𝑚2𝑘1)𝑟1, and 𝐶1 = (𝑞 − 𝑟1𝑚1)𝑘1𝐸, so there are several possible values for 𝑥𝑎
∗ as follows. 

i. 𝐷1 = 0 and 𝐵1 < 0, or 

ii. 𝐷1 > 0 and 𝐶1 < 0, or 

iii. 𝐷1 > 0, 𝐶1 = 0, and 𝐵1 < 0, or 

iv. 𝐷1 > 0, 𝐶1 > 0, and 𝐵1 < 0. 

d. 𝑇11 and 𝑇13 are the equilibrium point of the system of equation (2) if 𝐷2 = 𝐵2
2 − 4𝐴2𝐶2 ≥ 0, 

then will get 𝑥𝑏
∗ = 𝑥11

∗ = 𝑥13
∗. Where, 𝐴2 = 𝑟1𝑚2, 𝐵2 = (𝑚1𝐸 − 𝑚2𝑘1 − 𝑎𝑚2𝑘2)𝑟1 and 𝐶2 =

((𝑞 − 𝑟1𝑚1)𝑘1 − 𝑎𝑟1𝑚1𝑘2)𝐸, so there are several possible values for 𝑥𝑏
∗ as follows. 

i. 𝐷2 = 0 and 𝐵2 < 0, or 

ii. 𝐷2 > 0 and 𝐶2 < 0, or 

iii. 𝐷2 > 0, 𝐶2 = 0, and 𝐵2 < 0, or 

iv. 𝐷2 > 0, 𝐶2 > 0, and 𝐵2 < 0. 

e. 𝑇14 and 𝑇15 are the equilibrium point of the system of equation (2) if 𝐷3 = 𝐵3
2 − 4𝐴3𝐶3 ≥ 0, 

then will get 𝑥𝑐
∗ = 𝑥14

∗ = 𝑥15
∗. Where, 𝐴3 = (1 + 𝑏𝑐)𝑟1𝑚2 > 0, 𝐵3 = ((1 + 𝑏𝑐)(𝑚1𝐸 −

𝑚2𝑘1) + (𝑏𝑘3 − 𝑘2)𝑎𝑚2)𝑟1 and 𝐶3 = ((1 + 𝑏𝑐)(𝑞 − 𝑟1𝑚1)𝑘1 + (𝑏𝑘3 − 𝑘2)𝑎𝑟1𝑚1)𝐸, so there 

are several possible values for 𝑥𝑐
∗ as follows. 

i. 𝐷3 = 0 and 𝐵3 < 0, or 

ii. 𝐷3 > 0 and 𝐶3 < 0, or 

iii. 𝐷3 > 0, 𝐶3 = 0, and 𝐵3 < 0, or 

iv. 𝐷3 > 0, 𝐶3 > 0, and 𝐵3 < 0. 

 

Proof: Based on the existing reality, the population number will always be not negative, so the 

solution of the system of equation (2) must be non-negative. 

a. 𝑇0 = (0,0,0,0), 𝑇1 = (0,0,0, 𝑘4), 𝑇2 = (0,0, 𝑘3, 0), 𝑇3 = (0, 𝑘2, 0,0), 𝑇4 = (0,0, 𝑘3, 𝑘4), and  𝑇5 =

(0, 𝑘2, 0, 𝑘4 + 𝑑𝑘2) is always not negative, so that 𝑇𝑖, 𝑖 = 0,1,… ,5 is the equilibrium point for 

the system of equation (2). 

b. 𝑇6 = (0,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) and 𝑇7 = (0,

𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) is not negative, so that 

𝑇6 and 𝑇7 is the equilibrium point for the system of equation (2). 

c. If 𝐷1 ≥ 0, then have  

i. the twin solution is not negative that is 𝑇8 = (
−𝐵1

2𝐴1
, 0,0,0) , 𝑇9 = (

−𝐵1

2𝐴1
, 0,0, 𝑘4) , 𝑇10 =

(
−𝐵1

2𝐴1
, 0, 𝑘3, 0), and 𝑇12 = (

−𝐵1

2𝐴1
, 0, 𝑘3, 𝑘4), or 

ii. the one solution is not negative that is 𝑇8 = (
−𝐵1+√𝐷1

2𝐴1
, 0,0,0) , 𝑇9 =

(
−𝐵1+√𝐷1

2𝐴1
, 0,0, 𝑘4) , 𝑇10 = (

−𝐵1+√𝐷1

2𝐴1
, 0, 𝑘3, 0), and 𝑇12 = (

−𝐵1+√𝐷1

2𝐴1
, 0, 𝑘3, 𝑘4), or 

iii. the one solutions are not negative namely 𝑇8 = (
−𝐵1

𝐴1
, 0,0,0) , 𝑇9 = (

−𝐵1

𝐴1
, 0,0, 𝑘4) , 𝑇10 =

(
−𝐵1

𝐴1
, 0, 𝑘3, 0), and 𝑇12 = (

−𝐵1

𝐴1
, 0, 𝑘3, 𝑘4), or 
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iv. the two solutions are not negative namely 𝑇8 = (
−𝐵1±√𝐷1

2𝐴1
, 0,0,0) , 𝑇9 =

(
−𝐵1±√𝐷1

2𝐴1
, 0,0, 𝑘4) , 𝑇10 = (

−𝐵1±√𝐷1

2𝐴1
, 0, 𝑘3, 0), and 𝑇12 = (

−𝐵1±√𝐷1

2𝐴1
, 0, 𝑘3, 𝑘4). 

Since the value of 𝑥𝑎
∗ > 0, 𝑦∗ = 0, 𝑧∗ ≥ 0, and 𝑝∗ ≥ 0, then 𝑇8, 𝑇9, 𝑇10, and 𝑇12 is the 

equilibrium point for the system of equation (2).  

d. If 𝐷2 ≥ 0, then have  

i. the twin solution is not negative that is 𝑇11 = (
−𝐵2

2𝐴2
, 𝑘2, 0,0) and 𝑇13 = (

−𝐵2

2𝐴2
, 𝑘2, 0, 𝑘4 +

𝑑𝑘2), or 

ii. the one solution is not negative that is 𝑇11 = (
−𝐵2+√𝐷2

2𝐴2
, 𝑘2, 0,0) and 𝑇13 =

(
−𝐵2+√𝐷2

2𝐴2
, 𝑘2, 0, 𝑘4 + 𝑑𝑘2), or 

iii. the one solutions are not negative namely 𝑇11 = (
−𝐵2

𝐴2
, 𝑘2, 0,0) and 𝑇13 = (

−𝐵2

𝐴2
, 𝑘2, 0, 𝑘4 +

𝑑𝑘2), or 

iv. the two solutions are not negative namely 𝑇11 = (
−𝐵2±√𝐷2

2𝐴2
, 𝑘2, 0,0) and 𝑇13 =  

Since the value of 𝑥𝑏
∗ > 0, 𝑦∗ ≥ 0, 𝑧∗ = 0, and 𝑝∗ ≥ 0, then 𝑇11 and 𝑇13 is the equilibrium 

point for the system of equation (2).  

e. If 𝐷3 ≥ 0, then have  

i. the twin solution is not negative that is 𝑇14 = (
−𝐵3

2𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) and 𝑇15 =

(
−𝐵3

2𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
), or 

ii. the one solution is not negative that is 𝑇14 = (
−𝐵3+√𝐷3

2𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) and 𝑇15 =

(
−𝐵3+√𝐷3

2𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
), or 

iii. the one solutions are not negative namely 𝑇14 = (
−𝐵3

𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) and 𝑇15 =

(
−𝐵3

𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
), or 

iv. the two solutions are not negative namely 𝑇14 = (
−𝐵3±√𝐷3

2𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) and 𝑇15 =

(
−𝐵3±√𝐷3

2𝐴3
,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
). 

Since the value of 𝑥𝑐
∗ > 0, 𝑦∗ > 0, 𝑧∗ > 0, and 𝑝∗ ≥ 0, then 𝑇14 and 𝑇15 is the equilibrium 

point for the system of equation (2).  

In studying the dynamics of the model in the system of equation (2) around the equilibrium 

point 𝐸𝑖 , 𝑖 = 0,1,… ,15, a linear model is used in the system of equation (2). Furthermore, from 

the linearity, the Jacobian matrix is obtained from the system of equation (2) around the 

equilibrium point as follows. 
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𝐽(𝑥∗, 𝑦∗, 𝑧∗, 𝑝∗) =

[
 
 
 
 
 
 𝑟1 −

2𝑟1𝑥∗

𝑘1
+

𝑎𝑟1𝑦∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥∗)2

0

             
𝑎𝑟1𝑥∗

𝑘1
                           0

     𝑟2 −
2𝑟2𝑦∗

𝑘2
−

𝑟2𝑏𝑧∗

𝑘2
             

−𝑏𝑟2𝑦∗

𝑘2

0
0

0                             
𝑐𝑟3𝑧∗

𝑘3
        𝑟3 −

2𝑟3𝑧∗

𝑘3
+

𝑟3𝑐𝑦∗

𝑘3
0

0                
𝑑𝑟4𝑝∗

𝑘4
                              0 𝑟4 −

2𝑟4𝑝∗

𝑘4
+

𝑟4𝑑𝑦∗

𝑘4 ]
 
 
 
 
 
 

,

, 

The eigenvalues of the matrix 𝐽(𝑥∗, 𝑦∗, 𝑧∗, 𝑝∗) are obtained from |𝐽(𝑥∗, 𝑦∗, 𝑧∗, 𝑝∗) − 𝜆𝐼| = 0 is 

𝜆1 = 𝑟1 −
2𝑟1𝑥

∗

𝑘1
+

𝑎𝑟1𝑦
∗

𝑘1
−

𝑞𝑚1𝐸
2

(𝑚1𝐸 + 𝑚2𝑥∗)2
, 

𝜆4 = 𝑟4 −
2𝑟4𝑝

∗

𝑘4
+

𝑟4𝑑𝑦∗

𝑘4
, 

𝜆2 and 𝜆3 are obtained by solving following characteristic equation 

(𝑟2 −
2𝑟2𝑦∗

𝑘2
−

𝑏𝑟2𝑧∗

𝑘2
− 𝜆) (𝑟3 −

2𝑟3𝑧∗

𝑘3
+

𝑐𝑟3𝑦∗

𝑘3
− 𝜆) − (

𝑐𝑟3𝑧∗

𝑘3
)(

−𝑏𝑟2𝑦∗

𝑘2
) = 0, 

[𝜆2 + 𝐵𝜆 + 𝐶], 

where 

𝐵 = −𝑟2 − 𝑟3 +
2𝑟2𝑦

∗

𝑘2
+

𝑏𝑟2𝑧
∗

𝑘2
+

2𝑟3𝑧
∗

𝑘3
−

𝑐𝑟3𝑦
∗

𝑘3
 

and  

𝐶 =
𝑟2𝑟3
𝑘2𝑘3

(𝑘2𝑘3 + (−2𝑘3 + 𝑐𝑘2 − 2𝑐𝑦∗)𝑦∗ + (−2𝑘2 + 𝑏𝑘3 + 2𝑏𝑧∗)𝑧∗ + 4𝑦∗𝑧∗).  

 

Based on theorem 1, in determining stability 𝐸𝑖 , 𝑖 = 0,1,… ,15 the system of equation (2) is 

expressed in the following theorem form. 

 

Theorem 3. Conditions for the stability of an equilibrium point 

If the solution to the system of equation (2) is 𝑇𝑖, 𝑖 = 0,1,2, … ,15, then the stability of the 

equilibrium point of the system of equation (2) which has the following conditions. 

 

a. The point 𝑇0 = (0,0,0,0) has unstable properties. 

b. The point 𝑇1 = (0,0,0, 𝑘4) has unstable properties. 

c. The point 𝑇2 = (0,0, 𝑘3, 0) has unstable properties. 

d. The point 𝑇3 = (0, 𝑘2, 0,0) has unstable properties. 

e. The point 𝑇4 = (0,0, 𝑘3, 𝑘4) has asymptotically stable properties. 

f. The point 𝑇5 = (0, 𝑘2, 0, 𝑘4 + 𝑑𝑘2) has unstable properties. 

g. The point 𝑇6 = (0,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) has unstable properties. 

h. The point 𝑇7 = (0,
𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) has asymptotically stable properties. 

i. The point 𝑇8 = (𝑥𝑎
∗, 0,0,0) has unstable properties. 

j. The point 𝑇9 = (𝑥𝑎
∗, 0,0, 𝑘4) has unstable properties. 

k. The point 𝑇10 = (𝑥𝑎
∗, 0, 𝑘3, 0) has unstable properties. 
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l. The point 𝑇11 = (𝑥𝑏
∗, 𝑘2, 0,0) has unstable properties. 

m. The point 𝑇12 = (𝑥𝑎
∗, 0, 𝑘3, 𝑘4) has asymptotically stable properties. 

n. The point 𝑇13 = (𝑥𝑏
∗, 𝑘2, 0, 𝑘4 + 𝑑𝑘2) has unstable properties. 

o. The point 𝑇14 = (𝑥𝑐
∗,

𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 0) has unstable properties. 

p. The point 𝑇15 = (𝑥𝑐
∗,

𝑘2−𝑏𝑘3

1+𝑏𝑐
,
𝑘3+𝑐𝑘2

1+𝑏𝑐
, 𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) has asymptotically stable properties. 

Proof:  

a. The eigenvalues of the 𝐽( 𝑇0) are 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = 𝑟2 > 0, 𝜆3 = 𝑟3 > 0, and 𝜆4 = 𝑟4 > 0. 

It is proved, that theorem 3 satisfies theorem 1(b). 

b. The eigenvalues of the 𝐽( 𝑇1) are 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = 𝑟2 > 0, 𝜆3 = 𝑟3 > 0, and 𝜆4 = −𝑟4. It is 

proved, that theorem 3 satisfies theorem 1(b). 

c. The eigenvalues of the 𝐽( 𝑇2) are 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = 𝑟2 −

𝑏𝑟2𝑘3

𝑘2
, 𝜆3 = −𝑟3, and 𝜆4 = 𝑟4 > 0. 

It is proved, that theorem 3 satisfies theorem 1(b). 

d. The eigenvalues of the Jacobian 𝐽( 𝑇3) are 𝜆1 = 𝑟1 +
𝑎𝑟1𝑘2

𝑘1
−

𝑞

𝑚1
, 𝜆2 = −𝑟2, 𝜆3 = 𝑟3 +

𝑐𝑟3𝒌𝟐

𝑘3
>

0, and 𝜆4 = 𝑟4 +
𝑑𝑟4𝒌𝟐

𝑘4
> 0. It is proved, that theorem 3 satisfies theorem 1(b). 

e. The eigenvalues of the 𝐽( 𝑇4) are 𝜆1 = 𝑟1 −
𝑞

𝑚1
, 𝜆2 = 𝑟2 −

𝑏𝑟2𝑘3

𝑘2
, 𝜆3 = −𝑟3 < 0, and 𝜆4 =

−𝑟4 < 0. Further, if 𝑟1 −
𝑞

𝑚1
< 0 and 𝑟2 −

𝑏𝑟2𝑘3

𝑘2
< 0, then 𝜆1,2 < 0. It is proved, that theorem 

3 satisfies theorem 1(a). 

f. The eigenvalues of the 𝐽( 𝑇5) are 𝜆1 = 𝑟1 +
𝑎𝑟1𝑘2

𝑘1
−

𝑞

𝑚1
, 𝜆4 = −𝑟2, 𝜆3 = 𝑟3 +

𝑐𝑟3𝒌𝟐

𝑘3
> 0, and 

𝜆4 = 𝑟4 −
2𝑟4(𝑘4+𝑑𝑘2)

𝑘4
+

𝑟4𝑑𝑘2

𝑘4
. It is proved, that theorem 3 satisfies theorem 1(b). 

g. The eigenvalues of the 𝐽( 𝑇6) are 𝜆1 = 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

𝑞

𝑚1
, 𝜆4 = 𝑟4 +

𝑑𝑟4

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) > 0 

and  𝜆 2,3 =
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
, where 𝐴 = 1, 𝐵 = −𝑟2 − 𝑟3 +

2𝑟2𝑦∗

𝑘2
+

𝑏𝑟2𝑧∗

𝑘2
+

2𝑟3𝑧∗

𝑘3
−

𝑐𝑟3𝑦∗

𝑘3
, and 𝐶 =

𝑟2𝑟3

𝑘2𝑘3
(𝑘2𝑘3 + (−2𝑘3 + 𝑐𝑘2 − 2𝑐𝑦∗)𝑦∗ + (−2𝑘2 + 𝑏𝑘3 + 2𝑏𝑧∗)𝑧∗ + 4𝑦∗𝑧∗). It is proved, 

that theorem 3 satisfies theorem 1(b). 

h. The eigenvalues of the 𝐽( 𝑇7) are 𝜆1 = 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

𝑞

𝑚1
, 𝜆4 = 𝑟4 −

2𝑟4

𝑘4
(𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) +

𝑟4𝑑

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) and  𝜆 2,3 =

−𝐵±√𝐵2−4𝐴𝐶

2𝐴
, where 𝐴 = 1, 𝐵 = −𝑟2 − 𝑟3 +

2𝑟2𝑦∗

𝑘2
+

𝑏𝑟2𝑧∗

𝑘2
+

2𝑟3𝑧∗

𝑘3
−

𝑐𝑟3𝑦∗

𝑘3
, and 𝐶 =

𝑟2𝑟3

𝑘2𝑘3
(𝑘2𝑘3 + (−2𝑘3 + 𝑐𝑘2 − 2𝑐𝑦∗)𝑦∗ + (−2𝑘2 + 𝑏𝑘3 +

2𝑏𝑧∗)𝑧∗ + 4𝑦∗𝑧∗). Further, if 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

𝑞

𝑚1
< 0, 𝑟4 −

2𝑟4

𝑘4
(𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) +

𝑟4𝑑

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) < 0 and  𝐵, 𝐶 > 0, then 𝜆1,2,3,4 < 0. It is proved, that theorem 3 satisfies 

theorem 1(a). 

i. The eigenvalues of the 𝐽( 𝑇8) are 𝜆1 = 𝑟1 −
2𝑟1𝑥𝑎

∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑎
∗)2

, 𝜆2 = 𝑟2 > 0, 𝜆3 = 𝑟3 > 0, 

and 𝜆4 = 𝑟4 > 0. It is proved, that theorem 3 satisfies theorem 1(b). 
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j. The eigenvalues of the 𝐽( 𝑇9) are 𝜆1 = 𝑟1 −
2𝑟1𝑥𝑎

∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑎
∗)2

, 𝜆2 = 𝑟2 > 0, 𝜆3 = 𝑟3 > 0, 

and 𝜆4 = −𝑟4. It is proved, that theorem 3 satisfies theorem 1(b). 

k. The eigenvalues of the 𝐽( 𝑇10) are 𝜆1 = 𝑟1 −
2𝑟1𝑥𝑎

∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑎
∗)2

, 𝜆2 = 𝑟2 −
𝑏𝑟2𝑘3

𝑘2
, 𝜆3 =

−𝑟3, and 𝜆4 = 𝑟4 > 0. It is proved, that theorem 3 satisfies theorem 1(b). 

l. The eigenvalues of the 𝐽( 𝑇11) are 𝜆1 = 𝑟1 +
𝑎𝑟1𝑘2

𝑘1
−

2𝑟1𝑥𝑏
∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑏
∗)2

 , 𝜆2 = −𝑟2, 𝜆3 =

𝑟3 +
𝑐𝑟3𝒌𝟐

𝑘3
> 0, and 𝜆4 = 𝑟4 +

𝑑𝑟4𝒌𝟐

𝑘4
> 0. It is proved, that theorem 3 satisfies theorem 1(b). 

m. The eigenvalues of the 𝐽( 𝑇12) are 𝜆1 = 𝑟1 −
2𝑟1𝑥𝑎

∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑎
∗)2

, 𝜆2 = 𝑟2 −
𝑏𝑟2𝑘3

𝑘2
, 𝜆3 =

−𝑟3 < 0, and 𝜆4 = −𝑟4 < 0. Further, if 𝑟1 −
2𝑟1𝑥𝑎

∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑎
∗)2

< 0 and 𝑟2 −
𝑏𝑟2𝑘3

𝑘2
< 0, 

then 𝜆1,2 < 0. It is proved, that theorem 3 satisfies theorem 1(a). 

n. The eigenvalues of the 𝐽( 𝑇13) are 𝜆1 = 𝑟1 +
𝑎𝑟1𝑘2

𝑘1
−

2𝑟1𝑥𝑏
∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑏
∗)2

, 𝜆4 = −𝑟2, 𝜆3 =

𝑟3 +
𝑐𝑟3𝒌𝟐

𝑘3
> 0, and 𝜆4 = 𝑟4 −

2𝑟4(𝑘4+𝑑𝑘2)

𝑘4
+

𝑟4𝑑𝑘2

𝑘4
. It is proved, that theorem 3 satisfies 

theorem 1(b). 

o. The eigenvalues of the 𝐽( 𝑇14) are 𝜆1 = 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

2𝑟1𝑥𝑐
∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑐
∗)2

, 𝜆4 = 𝑟4 +

𝑑𝑟4

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) > 0 and  𝜆 2,3 =

−𝐵±√𝐵2−4𝐴𝐶

2𝐴
, where 𝐴 = 1, 𝐵 = −𝑟2 − 𝑟3 +

2𝑟2𝑦∗

𝑘2
+

𝑏𝑟2𝑧∗

𝑘2
+

2𝑟3𝑧∗

𝑘3
−

𝑐𝑟3𝑦∗

𝑘3
, and 𝐶 =

𝑟2𝑟3

𝑘2𝑘3
(𝑘2𝑘3 + (−2𝑘3 + 𝑐𝑘2 − 2𝑐𝑦∗)𝑦∗ + (−2𝑘2 + 𝑏𝑘3 + 2𝑏𝑧∗)𝑧∗ +

4𝑦∗𝑧∗). It is proved, that theorem 3 satisfies theorem 1(b). 

p. The eigenvalues of the 𝐽( 𝑇15) are 𝜆1 = 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

2𝑟1𝑥𝑐
∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑐
∗)2

, 𝜆4 = 𝑟4 −

2𝑟4

𝑘4
(𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) +

𝑟4𝑑

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) and  𝜆 2,3 =

−𝐵±√𝐵2−4𝐴𝐶

2𝐴
, where 𝐴 = 1, 𝐵 = −𝑟2 − 𝑟3 +

2𝑟2𝑦∗

𝑘2
+

𝑏𝑟2𝑧∗

𝑘2
+

2𝑟3𝑧∗

𝑘3
−

𝑐𝑟3𝑦∗

𝑘3
, and 𝐶 =

𝑟2𝑟3

𝑘2𝑘3
(𝑘2𝑘3 + (−2𝑘3 + 𝑐𝑘2 − 2𝑐𝑦∗)𝑦∗ + (−2𝑘2 +

𝑏𝑘3 + 2𝑏𝑧∗)𝑧∗ + 4𝑦∗𝑧∗). Further, if 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

𝑞

𝑚1
< 0, 𝑟4 −

2𝑟4

𝑘4
(𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) +

𝑟4𝑑

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) < 0 and  𝐵, 𝐶 > 0, then 𝜆1,2,3,4 < 0. It is proved, that theorem 3 satisfies 

theorem 1(a). 

 

2. Numerical Simulation 

Several numerical simulations that match the results of the analysis described earlier will be 

provided at this stage. The numerical simulation shows the local stability for 𝑇4, 𝑇7, 𝑇12, and 𝑇15. 

In selecting the parameters used, namely based on the conditions in the results of the previous 

analysis. This is because there is no real data that corresponds to this model. Therefore, the 

parameter values used in the first simulation are as follows.   

𝑞 = 𝑟2 = 𝑟3 = 𝑟4 = 𝑎 = 𝑐 = 𝑑 = 𝑘1 = 1, 𝑟1 = 0.4, 𝑏 = 0.1, 𝐸 = 0.001, 𝑘2 = 0.8, 𝑘3 = 9, 𝑘4 =

3, 𝑚1 = 2 and 𝑚2 = 0.9, while in the second simulation values and values were taken 𝑞 =

7, 𝑟1 = 𝑟2 = 𝑟3 = 𝑟4 = 𝑏 = 𝑐 = 𝑑 = 0.01, 𝑎 = 1, 𝑏 = 0.1,   𝐸 = 0.0001, 𝑘1 = 𝑘2 = 2, 𝑘3 =

9, 𝑘4 = 3,𝑚1 = 2, and 𝑚2 = 4. By using the parameter values in the first simulation, the 
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equilibrium point is obtained 𝑇4 = (0,0,9,3) and 𝑇12 = (0.99,0,9,3)which is locally 

asymptotically stable as it satisfies 𝑟1 −
𝑞

𝑚1
= −0.1 < 0, 𝑟2 −

𝑏𝑟2𝑘3

𝑘2
= −0.125 < 0, and 𝑟1 −

2𝑟1𝑥𝑎
∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑎
∗)2

= −0.324829 < 0, see Figure 1. This shows that at point 𝑇4 the first 

commensal population and the host will become extinct, while the second commensal and 

parasite populations can survive. At point 𝑇12, the first commensal population will become 

extinct, while the second host, parasite and commensal population can survive. Then, by using 

the parameter values in the second simulation, the equilibrium point is obtained 𝑇7 =

(0,1.9,9.019,3.019) and 𝑇15 = (3.9,1.9,9.019,3.019) with the conditions of existence are 𝑘2 =

2 > 0.09 = 𝑏𝑘3, 𝐴3 = 0.04 > 0, 𝐵3 = −0.1564, 𝐶3 = 0.00139 and 𝐷3 = 0.02424. 𝑇7 and 𝑇15 

which is locally asymptotically stable as it satisfies 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

𝑞

𝑚1
= −0.136363 <

0, 𝑟1 +
𝑎𝑟1

𝑘1
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) −

2𝑟1𝑥𝑐
∗

𝑘1
−

𝑞𝑚1𝐸2

(𝑚1𝐸+𝑚2𝑥𝑐
∗)2

= −0.019459 < 0, 𝑟4 −
2𝑟4

𝑘4
(𝑘4 +

𝑑(𝑘2−𝑏𝑘3)

1+𝑏𝑐
) +

𝑟4𝑑

𝑘4
(
𝑘2−𝑏𝑘3

1+𝑏𝑐
) = −0.0100637 < 0, 𝐵 = 0.01957 > 0,  and 𝐶 = 0.00010472 > 0, see Figure 2. This 

shows that at point 𝑇4 the first commensal population and the host will become extinct, while 

the second commensal and parasite populations can survive. At point 𝑇12, the first commensal 

population will become extinct, while the second host, parasite and commensal population can 

survive. 

 
Figure 1.  Numeric Simulations in  T4 and T12 
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Figure 2.  Numeric Simulations in  T7 and T15 

 

 

D. CONCLUSION AND SUGGESTIONS 

The model consist of four population, namely first commensal population, second 

commensal population, host population, and parasite population. The dynamical analysis in this 

study found sixteen equilibrium points with their existence and local asymptotic stability 

properties. The fourth, seventh, twelfth, and fifteenth points are locally asymptotically stable if 

they meet the specified stability conditions, while the other points are always unstable. From 

fourth point it can be interpreted that the parasite population, the second commensal will never 

become extinct, seventh point means that the host, parasite and second commensal population 

will never become extinct, twelfth point means that the first commensal population, parasites 

and the second commensal will never be extinct, while fifteenth point means that the four 

populations can live side by side. From the results of the numerical simulations that have been 

carried out, it shows that it is in accordance with the analysis being carried out. From the first 

simulation using the parameter values used, it can be seen that the graph converges towards 

fourth point and twelfth point, while the second simulation uses the parameter values used, it 

can be seen that the graph converges towards seventh point and fifteenth point. 

Further research, it is advisable to add harvest to unharvested populations. 
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