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 This study discusses the dynamic analysis of the COVID-19 model with quarantine 
and isolation. The population in this model is divided into seven subpopulations: 
subpopulation of susceptible, exposed, asymptomatic, symptomatic, quarantine, 
isolated and recovered. Two equilibrium points were obtained based on the 
analysis results, namely the disease-free and endemic equilibrium points. The 
existence and local stability of the equilibrium point depends on the value of the 
basic reproduction number 𝑅0. Then, the point of disease-free equilibrium always 
exists, and the point of endemic equilibrium exists when it meets 𝑅0 > 1. The 
point of disease-free equilibrium is locally asymptotically stable when it satisfies 
𝑅0 < 1 and the endemic equilibrium point is locally asymptotically stable with 
conditions. Furthermore, numerical simulations are carried out to determine the 
model's behavior using the fourth-order Runge-Kutta method. The numerical 
simulation obtained supports the dynamic analysis results. Finally, the graphical 
results are presented. The findings here suggest that human-to-human contact is a 
potential cause of the COVID-19 outbreak. Therefore, quarantine of susceptible 
and exposed subpopulations can reduce the risk of infection. Likewise, isolation of 
infected subpopulations can reduce the risk of spreading COVID-19. 
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A. INTRODUCTION  
Coronavirus is a virus that can cause respiratory infections ranging from the common cold 

to SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) 
(WHO, 2020a). The three significant outbreaks due to the Coronavirus that have occurred are 
the SARS outbreak in China (2003), the MERS (camel flu) outbreak in Middle Eastern 
countries and was reported in Saudi Arabia (2012), and the MERS outbreak in South Korea 
(2015) (Kucharski et al., 2020; Rao et al., 2021; Tahir et al., 2019; Usaini et al., 2019). In 
addition, the newest type of Coronavirus found was named Novel-Coronavirus or 2019n-Cov 
as the cause of the COVID-19 disease. 

COVID-19 first appeared and was identified in Wuhan-Hubei Province, China, around 
December 2019 (Rao et al., 2021). Furthermore, the virus spreads to various countries rapidly 
through individuals who have had a history of travel to Wuhan (Chen et al., 2020; Tang et al., 
2020; WHO, 2020a; Yousefpour et al., 2020). Before being reported and informed to the public, 
a doctor named Li Wenliang had provided information about the emergence of this virus 
because seven patients from the local seafood market were diagnosed with a SARS-like 
disease and were quarantined in a hospital (Nainggolan, 2020). 
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On January 10, 2020, the World Health Organization (WHO) released various guidelines or 
temporary guidelines for all countries, such as observing potentially infected people, 
collecting and testing samples (tracing), treating patients, controlling and reducing the 
burden of COVID infection in hospital (Rois et al., 2021b).  

The symptoms experienced are usually mild and appear slowly. However, humans can be 
infected with mild or no symptoms and become infected with serious symptoms, namely 
experiencing fever or shortness of breath or coughing accompanied by difficulty breathing 
and chest pain (WHO, 2020a). COVID-19 is spread through respiratory droplets secreted by 
an infected individual either with mild or no symptoms and serious symptoms or with 
symptoms. WHO also stated that individuals without symptoms can transmit the Coronavirus 
through the air and even from the environment. 

The government has made all efforts to control COVID-19, such as social distancing, 
tracing, working from home, and stringent territorial restrictions (Rois et al., 2021a). Then, 
how to control every time an outbreak occurs in an area without vaccines or treatment, 
individual isolation, and quarantine is the most effective way (Usaini et al., 2019). According 
to WHO (2020b), quarantine is defined as restricting activities or segregating susceptible 
individuals as long as there is no essential need to leave the house. Then, individuals who 
have a history of contact with individuals infected with COVID-19 or have a history of 
travelling to an area where local transmission has occurred and separate themselves by 
staying at home during the incubation period (2 weeks) are also included in the quarantine 
group. Furthermore, isolation is defined as the separation of a sick or infected individual from 
other individuals either directly in the hospital or at home (self-isolation) with medical 
personnel monitoring. 

WHO recognizes mathematical models play an important role in informing decisions or 
solutions to health decision-makers (doctors or health professionals) and policymakers 
(government) (Tang et al., 2020). One approach to explaining problems in the real world is to 
formulate real problems into mathematical models. The assumptions used on problems that 
exist in the environment can be transformed into a mathematical model. After the 
mathematical model is obtained, it can be solved mathematically and applied again to real 
problems. Therefore, researchers are moving together to research COVID-19 from all different 
aspects according to the area studied with mathematical modeling. Some solutions can be 
taken to destroy or reduce the increase in the number of infected.  

The mathematical model that can describe the spread of disease is the SIR model. Kermack 
and McKendrick first introduced the SIR model (1927), then became a reference source and 
played an important role in developing mathematics about disease transmission (Müller & 
Kuttler, 2015; Murray, 2002). Furthermore, science has made SIR models a reference for 
many scientists to make mathematical models of disease spread more specifically. This 
mathematical model is used as quantitative information in disease and provides benefits for 
policy-making and disease outbreaks. Several studies related to the disease spread, such as a 
study on the Coronavirus, resulted in SARS (Feng, 2007) and MERS (Tahir et al., 2019; Usaini 
et al., 2019). Then the Coronavirus developed into a virus known as the COVID-19 virus and 
became a hot topic in 2020. 

Soewono (2020) models the initial spread of COVID-19 by applying the SEIR model, which 
consists of four subpopulations: S (susceptible), E (exposed), I (symptomatic), and R 
(recovered). Furthermore, Belgaid et al. (2020) added subpopulation A (asymptomatic), so 
that the population is divided into five subpopulations: S, E, A, I, and R. The cause of the 
subpopulation being infected without symptoms is due to WHO information that individuals 
infected with COVID-19 can be infected by showing symptoms and some who do not show 
symptoms. Another study, Zeb et al. (2020), added the isolation subpopulation (H) and 
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divided the population into five subpopulations: S, E, I, H, and R. This is based on the latest 
information that infected individuals will spread to surrounding individuals because they are 
not given isolation measures. A study on COVID-19 was also carried out by Jia et al. (2020) 
involving quarantine (Q) and isolation (H) subpopulations so that the model presented 
divides the population into seven subpopulations: S, E, A, I, Q, H, and R. The model made is also 
based on the latest information from WHO, that susceptible individual should be quarantined 
first to reduce further spread. 

In this study, the COVID-19 model was constructed by combining research by Belgaid et al. 
(2020), Zeb et al. (2020), and Jia et al. (2020), which aims to refine the model such as the 
conditions reported by WHO.  Some reports from WHO are that infected individuals without 
symptoms can transmit COVID-19, healthy individuals and exposed individuals are better off 
quarantined, and this can also reduce the burden of labor in hospitals, individuals who are 
quarantined during the incubation period with no symptoms can be said to be recovered, and 
if there are symptoms, isolation is carried out, and infected individuals, both symptomatic and 
asymptomatic, in order to recover, are isolated first. Population in this model is divided into 
seven subpopulations: S, E, A, I, Q, H, and R. The model that has been formed is then carried 
out dynamic analysis such as determining the positivity and limitations of the solution, the 
point of equilibrium, finding the basic reproduction number 𝑅0 and analyze its stability. 
Furthermore, numerical simulation is carried out using the fourth-order Runge-Kutta method. 
Finally, the graphical results are presented. The findings here suggest that human-to-human 
contact is a potential cause of the COVID-19 outbreak. Therefore, quarantine of susceptible 
and exposed subpopulations can reduce the risk of infection and isolation of infected 
subpopulation can reduce the risk of spreading COVID-19. 
 
 
B. METHODS 

In this study, several stages  were carried out as follows: 

 
Figure 1. Flowchart of discussion of the dynamic analysis 
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The explanation of the stages of the research are as follows: 
1. Construction of COVID-19 Model 

This model consists of seven subpopulations: S (susceptible), E (exposed), A 
(asymptomatic), I (symptomatic), Q (quarantine), H (isolation), and R (recovered). 
SEIAQHR model is based on conditions in Indonesia and a combination of research by 
Belgaid et al. (2020), Jia et al. (2020), and Zeb et al. (2020). 

2. Point of equilibrium 
Definition 1. (Layek, 2015) The point �⃗�∗ = (𝑥1

∗, … , 𝑥𝑛
∗ ) is called the critical point of 

the system of equations 
𝑑�⃗�

𝑑𝑡
= �⃗�(�⃗�), �⃗� ∈ ℝ𝑛 if it satisfies �⃗�(�⃗�) = 0. 

3. The Basic Reproduction Number (𝑅0) 
𝑅0  is the average number of newly infected individuals caused by one infected 

individual in a susceptible population. 𝑅0 is used to determine the spread of disease 
and predict a population can endanger or not. The conditions that arise are among the 
following possibilities (Heffernan et al., 2005): 

a. If 𝑅0 < 1 means that an infected individual can transmit the disease on average 
less than one newly infected individual, so it can be predicted that the infection 
will disappear and there will be no spread of disease, or it is called disease-free. 

b. If 𝑅0 > 1 means that an infected individual can transmit the disease on average 
more than one newly infected individual, causing it to spread the disease easily. 

Furthermore, the next-generation matrix (NGM) is one method for determining 𝑅0. 
In the NGM method, the compartment model used is the infected compartment (Brauer 
& Castillo-Chavez, 2012). Furthermore, the infected compartment model can be 
expressed as:   

 
dx

f v
dt

    (1) 

So, obtained 
 

 

   0 0
,  .

f E v E
F V

x x

 
 

   (2) 

NGM is defined as 𝑀 = 𝐹𝑉−1 and 𝑅0 can be obtained from 𝑅0 = 𝜌(𝑀), where 𝜌(𝑀) 
is the spectral radius of the matrix 𝑀, which is the largest modulus of the eigenvalues 
of the matrix 𝑀. 

4. Stability analysis 
Theorem 1. (Layek, 2015) Let 𝜆1, 𝜆2, … 𝜆𝑛 be the eigenvalues of the matrix 𝑀. The 

stability criterion are: 
a. Asymptotically stable, if all eigenvalues have a negative real part, 
b. Unstable if there is at least one eigenvalue that has a positive real part. 

Furthermore, the Routh-Hurwitz criterion is an alternative for determining 
eigenvalues, apart from the jacobian matrix at the equilibrium point. The characteristic 
equations system in the form of a polynomial is given as follows (Murray, 2002): 

 

 
  1 2

0 1 2 ... 0,n n n

nf a a a a         
 (3) 
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with coefficients 𝑎𝑖 , 𝑖 = 1, 2, … , 𝑛 and 𝑎𝑛 ≠ 0. The Routh-Hurwitz criterion was used to 
determine the real part of the characteristic root equation of the matrix 𝑀. The root of 
the characteristic equation (3) has a negative real part if and only if 𝑎𝑛 > 0 and 
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Furthermore, numerical simulations used in this study used the fourth-order Runge-Kutta 

method in the Matlab R2017a software.  
 
 

C. RESULT AND DISCUSSION 
1. Model Formulation 

COVID-19 model can be described in the compartment diagram in Figure 2 as follows 

 
Figure 2. COVID-19 compartment model 

Based on Figure 2, the following COVID-19 model is obtained 
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dE
S E I A E q

dt
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dI
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dQ
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dt

dH
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   

 

   



      

     

    

    

    

    

  

 (4) 

Description 
Λ ∶ Human recruitment rate, 
𝛽1: Contact rate of susceptible subpopulations with exposed, 
𝛽2: Subpopulation's contact rate is susceptible to symptomatic, 
𝛽3: Subpopulation's contact rate is susceptible to asymptomatic,  
𝜇 ∶ Natural death rate, 
𝑑 ∶ Death due to COVID-19 rate,  
𝑞1: Rate of susceptible individuals quarantined, 
𝑞2: Rate of exposed individuals quarantined, 
𝛼 ∶ Rate of return of individuals to susceptible subpopulations after quarantine, 
𝛾1: Isolation rate from symptomatic subpopulations, 
𝛾2: Isolation rate from quarantine subpopulation, 
𝛾3: Isolation rate from asymptomatic subpopulation, 
𝜃 ∶ Rate of asymptomatic individuals becomes symptomatic, 
𝑟1: Recovery rate after isolation, 
𝑟2: Recovery rate after quarantine, 
𝜎 ∶ Rate of progression from exposed to symptomatic, 
𝜔: Proportion of becoming infected is symptomatic. 

 
2. Model Analysis 

a. Basic properties 
If 𝑁 is the total population, then 𝑁 = 𝑆 + 𝐸 + A + 𝐼 + 𝑄 + 𝐻 + 𝑅. Thus obtained 

,

     ,

     ,

dN dS dE dA dI dQ dH dR

dt dt dt dt dt dt dt dt

dI N

N





      

   

  

 

and obtained 

( ) (0) .tN t N e 
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As a result, for 𝑡 → ∞ then lim
𝑡→∞

𝑁(𝑡)
Λ

𝜇
. From the solution above, it can be concluded 

that the model has a limited solution with the solution area is 

   , , , , , , | .S E A I Q H R N t


 
   

 
 

Theorem 2. (Positivity) Suppose the solution is related to the initial conditions  
(𝑆(0), 𝐸(0), 𝐴(0), 𝐼(0), 𝑄(0), 𝐻(0), 𝑅(0)) ∈ ℝ+

7  is (𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝐻(𝑡), 𝑅(𝑡)). 

So that for model (4), the positively invariant set is ℝ+
7 . 

Proof. Suppose that 𝜀 = 𝛽1𝐸 + 𝛽2𝐼 + 𝛽3𝐴, the first equation of model (4) results in 

  1 .
dS

S q
dt

       (5) 

Suppose a solution exists from the model (4) for the interval 𝑇 ∈ [0; +∞], then 
equation (5) can be solved, ∀𝑡 ∈ 𝑇, as 

 

   1 1

0 0

1

  

,

,

t t

q t ds q t ds

dS
S q

dt

d
e S e

dt
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 

   

    

 
    

 
 
 

 

which results in 

   1 1

0 0

  

0

(0) ,

t w

tq t ds q w dz

e S S e dw
       

    

   1 1

0 0

  

0

(0) ,

t w

tq t ds q w dz

e S S e dw
       

    

     1 1 1

0 0 0

   

0

(0) 0.

t t w

tq t ds q t ds q w dz

S S e e e dw
              

      

Therefore, ∀𝑡 ∈ 𝑇, 𝑆(𝑡) ≥ 0. Then, the second equation of model (4) is obtained 

      1 2 3 2 2 ,
dE

S E I A E q E q
dt

                 

or 

 2 ,
dE

E q
dt

      

and can be written as 

   2      0 .
dE

q dt E
E

       

then integrate, so get 
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when 𝑡 = 0, 

   2 0
0 0.

q
E E e

   
   

Hence, ∀𝑡, 𝐼(𝑡) ≥ 0. Similarly, the third equation of model (4) is shown  
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dA

A
dt

       

and can be written as 

   3        0
dA

dt A
A

       . 

then integrate, so get 

 
 

 

3

3

3ln ,

,

,

t c

t

A t c

A e

A Ce

  

  

  

   

  

    





 

when 𝑡 = 0, 
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Hence, ∀𝑡, 𝐴(𝑡) ≥ 0. Furthermore, in the same way, it can be shown that 𝐼(𝑡), 𝑄(𝑡), 
𝐻(𝑡), 𝑅(𝑡) are positive in the given interval. 

 
b. Equilibrium point and the basic reproduction number (𝑹𝟎) 

Equilibrium point for the system of equations  obtained when 
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with 1 1 ,h q  2 2 ,h q    3 1 ,h d    4 3 ,h      5 2 2 ,h r    and 

6 .h r   

Some manipulations of algebraic obtain two solutions of the system (6). The disease-
free equilibrium point (𝐾0) is one of them as follows: 
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Next, calculate 𝑅0 of the model (4). After that, the second point of equilibrium will be 
discussed. 𝑅0 is obtained using the NGM method. 

Suppose 𝑥 = (𝐸, 𝐼, 𝐴) and can be expressed to be 

 ,
dx

f v
dt

   (7) 
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Then, the partial derivatives of matrices 𝑓 and 𝑣 at point 𝐾0 are  
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The NGM by calculating 𝑀 = 𝐹𝑉−1. Furthermore, the basic reproduction number is 
always positive because all given parameters are positive, and it is obtained from the 
spectral radius of the 𝑀 matrix as follows 
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Theorem 3. For model (4), if 𝑅0 > 1 then there exists a unique positive endemic 
equilibrium point 𝐾∗. 

Proof. Using some manipulations of algebraic, and the second point of equilibrium of 
model (6) is obtained 
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It is clear from the values of 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑄∗, 𝐻∗, and 𝑅∗ that is, if 𝑅0 > 1 then there 

exists a unique positive endemic equilibrium point 𝐾∗. 
 

c. Stability analysis 
Based on the linearization process in the model (4), the Jacobi matrix is obtained as 

follows: 
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First, the Jacobi matrix equation (11) at the point 𝐾0 is 
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Then from equation (12), it can be concluded that the eigenvalues are 𝜆1 = −ℎ1 < 0, 

𝜆2 = −ℎ5 < 0, 𝜆3 = −ℎ6 < 0, and 𝜆4 = −𝜇 < 0. Therefore, the stability of the point 𝐾0 
depends on 
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with  

𝑎11 =
𝛽1Λ

ℎ1
− ℎ2, 𝑎12 =

𝛽2Λ

ℎ1
, 𝑎13 =

𝛽3Λ

ℎ1
, 𝑎21 = 𝜎𝜔, 𝑎22 = ℎ3, 𝑎23 = 𝜃, 𝑎31 = (1 − 𝜔)𝜎, and 

𝑎33 = ℎ4. 

So that it is obtained 
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and  

 
  

 

      

2 2 02 2

1 2 3 2 0 2 4 2 3 3 4 3 4 2 3 3 3 4

1 4

2 4 2 2 4 04

1 1 3 1 3 4

2 2

3 4 3 4

1 1
1 2 2

1 1 1 2 1
              2

              ,

h R
a a a h R h h h h h h h h h h

h h

h h h Rh
Y

h h h h h h

h h h h

 
   

         

  
           

         
      

   

 

 

where  

    2 4 3 32
32

1 3 4 1 3 4 4 4

1 1
.

h h
Y

h h h h h h h h

        


      
    

 
 

The characteristic equation (10) has real roots that are negative if it meets the Routh-
Hurwitz criteria. If 𝑅0 < 1, then 𝑎1 > 0, 𝑎3 > 0, and 𝑎1𝑎2 − 𝑎3 > 0. Based on Theorem 1, 
if 𝑅0 < 1 then the point 𝐾0 is obtained as locally asymptotically stable. If 𝑅0 > 1 then the 
value of 𝑎3 < 0, so the Routh-Hurwitz criterion is not met. As a result, if 𝑅0 > 1 then the 
point 𝐾0 is locally unstable. 

Second, the Jacobi matrix equation (10) at the point 𝐾∗ is 
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So that the eigenvalues are obtained 𝜆1 = −ℎ5 < 0, 𝜆2 = −ℎ6 < 0, and 𝜆3 = −𝜇 < 0. 
Therefore, the stability of the point 𝐾∗ depends on 
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with 𝑎11 = −(𝛽1𝐸∗ + 𝛽2𝐼∗ + 𝛽3𝐴∗ + ℎ1), 𝑎12 = −𝛽1𝑆∗, 𝑎13 = −𝛽2𝑆∗, 𝑎14 = −𝛽3𝑆∗,  
𝑎21 = 𝛽1𝐸∗ + 𝛽2𝐼∗ + 𝛽3𝐴∗, 𝑎22 = 𝛽1𝑆∗ − ℎ2 , 𝑎23 = 𝛽2𝑆∗ , 𝑎24 = 𝛽3𝑆∗, 𝑎32 = 𝜎𝜔, 𝑎33 = −ℎ3 , 
𝑎34 = 𝜃, 𝑎42 = (1 − 𝜔)𝜎, and 𝑎44 = −ℎ4. 

So that it is obtained  
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where  
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 It can be concluded that if 𝑅0 > 1 then 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, 𝑎4 > 0 and if 𝑅0 < 1 

then 𝑎4 < 0. Based on the characteristic equation (16), it is not easy to get the root value. 
Therefore, the stability properties of the point 𝐾∗ were obtained using the Routh-Hurwitz 
criterion. Furthermore, the point 𝐾∗ is asymptotically stable if and only if it meets the 
following criteria:  

1) 𝑎1 > 0, 
2) 𝑎4 > 0, 
3) 𝑎1𝑎2 − 𝑎3 > 0, 
4) 𝑎1𝑎2𝑎3 − 𝑎3

2 − 𝑎1
2𝑎4 > 0. 

Criteria (1) and (2) are met, so that point 𝐾∗ is locally asymptotically stable if the 
following criteria: 

1) 𝑎1𝑎2 − 𝑎3 > 0, 
2) 𝑎1𝑎2𝑎3 − 𝑎3

2 − 𝑎1
2𝑎4 > 0. 

 

d. Numerical simulations 
Numerical simulation of the solution model (4) is carried out to illustrate the analysis 

results obtained. The parameter values used in this simulation are shown in Table 1 and 
Table 2.  

Table 1. Parameters used for numerical simulation 
Parameter Parameter Value Source 

Λ   1.685 Assumed  

 𝜇  3.9139 Χ 10−5  (Aldila et al., 2020) 

 𝜎  0.196 Assumed 

 𝜃  0.01  (Aldila et al., 2020) 

 𝜔  0.4  (Aldila et al., 2020) 

 𝑑  0.087  (Sasmita et al., 2020) 

 𝑞1  0.15  Assumed 

 𝑞2  0.1  (Rois et al., 2021a) 

 𝛽1  0.0067  Assumed 

 𝛽2  0.0012203  Assumed 

 𝛽3  0.036  Assumed 
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Parameter Parameter Value Source 

𝛾1 0.083 (Aldila et al., 2020) 

𝛾2 0.01 (Aldila et al., 2020) 

𝛾3 0.2435 (Aldila et al., 2020) 

𝑟1 0.1 (Aldila et al., 2020) 

𝑟2 0.125 (Aldila et al., 2020) 

 
1) Numeric simulation for 𝑅0 < 1 

In this simulation, it is shown that the stability of the point 𝐾0 from the 
parameter values given in Table 1, is obtained 𝑅0 = 0.910223138 < 1.   

 
Figure 3. Solution graph for 𝑅0 < 1       Figure 4. Next solution graph for 𝑅0 < 1  

 
In Figure 3 and Figure 4, the graph of the solution is shown when 𝑅0 < 1 with 

three different initial values, namely 
𝑆𝑁1 = (267.6976, 0.0642, 0.0106, 0.0317, 0.0102, 0.0082, 0.0016), 
𝑆𝑁2 = (100, 15, 7, 5, 80, 15, 70), 
𝑆𝑁3 = (50, 30, 10, 10, 35, 27, 35). 

The simulation results with several initial values show that the solution graphs to 
the point 𝐾0. This means that after a long period, no one has been infected with 
COVID-19. The results of the numerical simulation support the results of the analysis, 
if 𝑅0 < 1, then 𝐾0 is locally asymptotically stable. 

2) Numeric simulation for 𝑅0 > 1 
Shows the stability of the point 𝐾∗, the parameter values in the table above are 

used except 𝑞1 = 0.09, 𝛽1 = 0.01, 𝛽2 = 0.1, 𝛽3 = 0.1, and 𝜎 = 0.0196, so that it is 
obtained the value 𝑅0 = 3.05362439 > 1.  
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Figure 5. Solution graph for 𝑅0 > 1  Figure 6. Next solution graph for 𝑅0 > 1 

 
Based on the parameter values given, the following values were obtained 
a) 𝑎1𝑎2 − 𝑎3 = 0.1287464752 > 0, 
b) 𝑎1𝑎2𝑎3 − 𝑎3

2 − 𝑎1
2𝑎4 = 0.002333422891 > 0. 

 
Here, it shows that the Routh-Hurwitz criteria are met, and the root of the 

characteristic equation (17) has a negative real part. Therefore, the point 𝐾∗ is 
locally asymptotically stable as it satisfies Theorem 1. In figure 4 shows the graph of 
the solution for 𝑅0 > 1 with three different initial values, namely 

     𝑆𝑁1 = (256.5839, 10.1401, 0.0106, 1.0551, 0.0245, 0.0082, 0.0016), 
     𝑆𝑁2 = (150, 200, 5, 45, 85, 20, 40), 
     𝑆𝑁3 = (70, 100, 10, 24, 65, 8, 100). 

 
The results of the simulation with several initial values given the graph of the solution to 

the point 𝐾∗And this means that there is a spread of disease due to COVID-19. The numerical 
simulation results obtained are in accordance with the analysis results, namely if 𝑅0 > 1, 
hence the point of 𝐾∗ is locally stable asymptomatic. Based on the given parameter values, we 
get 𝑅0 > 1. It means that there is an outbreak of disease due to COVID-19. This shows that 
quarantine and isolation are not enough to suppress the overall spread because quarantine 
and isolation are not carried out properly and are less effective. Therefore, the government 
needs to take more control to reduce the spread of more severe diseases. The controls taken 
are increasing quarantine and isolation, issuing regional restriction policies, providing 
socialization to maintain health protocols, not traveling if not too important, improving 
hospital care and management, and promoting vaccines and others.  

 
D. CONCLUSION AND SUGGESTIONS 

There are two equilibrium points in the COVID-19 model with quarantine and isolation: 
the point of the disease-free equilibrium (𝐾0)  and the point of the endemic equilibrium (𝐾∗). 
The point 𝐾0 always exists, whereas the point 𝐾∗ exists if it satisfies 𝑅0 > 1. Furthermore, the 
point 𝐾0 is asymptotically stable if  it meets 𝑅0 < 1, whereas the point 𝐾∗ is asymptotically 
stable with the conditions. 

This research examines the problem of solving the COVID-19 model with quarantine and 
isolation. For further study, it is advisable to add compartments such as a subpopulation of 
lifestyle changes, preventive controls such as preventive measures through education, 
treatment for infected individuals, vaccination, and tightening traveling out of town by 
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showing the results of rapid antigen or swabs to reduce of COVID-19 infections. In addition to 
the control measures given, it is also suggested to discuss cost-effectiveness analysis related 
to optimal control problems. 
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