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 Predator-prey type fishery models Oliv fish is a trans-endemic predator species 
that inhabits freshwater swamps and brackish water in Merauke, Papua. 
Maintaining the survival of the Oliv fish species is the main reason for compiling a 
mathematical model, so that it can be considered by local governments in making 
ecological policies. Method on model discussed is assembled with the growth of 
predator-prey populations following the growth of logistics. The response or 
predatory function corresponding to the behavior of endemic Oliv fish is the 
Beddington DeAngelis type. The growth of predatory species uses the concept of 
growth with stage structure, are divided into mature and immature. Research 
results show there are four equilibrium points of the mathematical model, but 
only one point becomes the asymptotic stable equilibrium point without 
harvesting 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) = 92.823, 1311.489, 525.957 and equilibrium point with 
harvesting 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) = 95.062, 92.639, 160.466 . Harvesting exploitation efforts 
are carried out by the community so that the harvesting variables are added with 
a proportional concept. Simulation of the results of the study shows a stable 
scheme and harvesting conducted can maintain the number of populations that 
continue.  
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A. INTRODUCTION 
Research on resource management is very important and has been done a lot, including in 

agricultural, fishery, and forestry resources. Fishery resources become one form of 
exploitation in renewable resources. Fishery resources consisting of fish organisms, shellfish, 
reptiles, amphibians, and marine mammals can produce biologically surplus in a given time 
(Ang & Safuan, 2019). Prudent species management and exploitation of harvesting without 
compromising future species productivity led to fishery resources being classified as 
renewable resources (Vijaya Lakshmi, 2020). 

Efforts to exploit and sustain species in the ecosystem must be carried out in a balanced 
manner. Fishery management urgently needs to be formulated appropriately (Belkhodja et al., 
2018). The result of fishery management formulation can be a recommendation of 
government policymakers in making laws or regulations on fishery exploitation. Fishery 
management measures are usually divided into catch control, growth control, and species 
sustainability technical measures (Chakraborty et al., 2013). The utilization of sustainable 
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resources means that those resources must be used as such so that they are not exhausted or 
not permanently damaged. 

The concept of sustainable balance of ecosystems, the economic productivity of fish 
populations, ecosystems, and population growth increases if fish population growth is not 
harvested (Pratama et al., 2019). Such a concept is very unlikely to happen, because the 
consumption and economic needs of the community are very high. Ecosystem-based fisheries 
management is an approach that takes the structural and functional roles of ecosystem 
components and services (Kaushik & Banerjee, 2021). The main objective is to achieve 
sustainable capability through appropriate fisheries management policies. 

Olive fish is a species of fish that inhabits the freshwater swamp fishery area of Merauke. 
As a typical predatory fish, Oliv fish do not prey on all types of prey fish. Availability factors, 
nutritional needs, and opportunities for predation are the causes of Oliv fish tend to be picky 
about their prey (Walters et al., 2016). As an endemic species, Olive fish are strongly 
supported by environmental forces on food availability, reproduction, and climate change. 
The influence of the carrying capacity of the environment causes an explosion in the number 
of species at a certain time. Exploitation or catching is carried out a lot, in line with the 
demand for exports of dry species from the Merauke area. Meanwhile, modern sophisticated 
exploitation or fishing efforts rarely catch only one type of fish. Economic short-term profit, 
into consideration of economic concepts. Meanwhile, many fish species experience a decline 
in population growth, which causes the ecosystem to grow unstable. 

The concept of harvesting like this is widely opposed by researchers who are oriented 
towards ecosystem sustainability, while it is supported by researchers who are profit-
oriented (Ghosh et al., 2020). Therefore, the harvesting balance that is carried out must 
consider the two sectors (Liu & Huang, 2020). Consumer needs to meet economic and 
nutritional needs are the biggest factors in supporting harvesting. Mathematical modeling in 
harvesting or fishery exploitation behavior has been explained by research that is very 
concerned (Manna et al., 2018). 

Mathematical modeling systems, especially in predator-prey population dynamics, are 
highly dependent on predator density, reciprocal interactions, predation functions, et all. 
These factors play an important role in the sustainability of the modeling system cycle (Zhao 
& Zeng, 2019). An important assumption in the predator-prey population dynamics model is 
that if the growth of the number of predators is high, then the density of the population plays 
an important role in the stability of the mathematical model system (Datta et al., 2019). 

Study, the interaction function or response function used is the Beddington DeAngelis type 
functional. The response function assumes that there is interference between predators. The 
response function model that characterizes Beddington DeAngelis's predator predation is an 
extension of the Holling type II response function (Lu et al., 2017). Characteristics that stand 
out in the predatory behavior of Olive fish are actively looking for prey, handling prey, and 
disturbing each other between competitors. The Beddington DeAngelis response function 
represents a complete description of predator characteristics rather than a prey-dependent 
response function (Ghanbari et al., 2020). With the abundance of prey populations or in other 
cases when population densities are high, the Beddington DeAngelis response function can 
represent a better mathematical model system. 

Meanwhile, in its development, predators with stage-structure are more efficient at 
drawing the actual state in the ecosystem. Predators with a stage-structure have been studied 
by many researchers (Jia et al., 2017). Describing immature and mature predators will 
facilitate the form of clustering of the predatory systems that occur. The age development of 
species, especially fish, really needs to be taken into account (Wang & Huang, 2014). There are 
species characteristics whose growth rate is very immature depending on the mature age 
group. It is common for systems of mutual protection to occur in these species (Kundu & 
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Maitra, 2018). Things like this will be more realistic to be taken into account in mathematical 
models (Yanni & Zulfahmi, 2019). 

The case of harvesting carried out in the predator-prey population model system, adopting 
rules prohibiting harvesting because it is included in the conservation area. Swamp areas in 
conservation areas are not allowed to harvest. This assumption will be the control area for 
harvesting in the context of population sustainability. Furthermore, the problem of harvesting 
control is carried out with an iterative numerical approach to describe the actual conditions in 
the ecosystem environment. In addition, an analysis was carried out regarding harvesting the 
results of the control system intervention and without intervention with the same model 
without optimal control. 
 
B. METHODS 

Research conducted is a literature study on mathematical modeling of endemic Oliv fish 
populations in Merauke. Characteristics considered in a mathematical model prey-prey 
system with a response function of the Beddington DeAngelis type. Assuming variables used 
𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), respectively, are the size of the prey population, immature predators, and 
mature predators at time 𝑡. Populations grow in a homogeneous environment, freshwater 
swamp area, and follow a logistical type of growth (Malard et al., 2020). The dynamic system 
of the mathematical model is described in differential equations, as follows, 

𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛽𝑥𝑧

𝑎 + 𝑏𝑥 + 𝑐𝑧
 

𝑑𝑦

𝑑𝑡
=

𝑤𝛽𝑥𝑧

𝑎 + 𝑏𝑥 + 𝑐𝑧
− 𝑚𝑦 − 𝑛𝑦 

𝑑𝑧

𝑑𝑡
= 𝑚𝑦 − 𝜌𝑧 

(1) 

where 𝑥(𝑡)0, 𝑦(𝑡)0, and 𝑧(𝑡)0. 

The parameter 𝑟(𝑘) is the intrinsic growth rate (carrying capacity) of the prey population, 
𝛽 is the interaction coefficient between prey and mature predators, 𝑤𝛽 represents the 
conversion efficiency of consumed prey into new predators and  𝜎 is the conversion rate 
assuming that 0 < 𝜎 < 1, because the interaction results in these prey and predators do not 
all become the rate of growth of new predators. Parameters 𝑎, 𝑏 are positive constants that 
describe the rate of prey capture and handling time during the predation process. Parameter 𝑐 
is a positive constant that describes the amount of disturbance that occurs between predators. 
Parameter 𝑚, is the rate of change of immature predators to mature predators, while 
parameter 𝑛, is the natural death rate of predators, respectively. The assumption of the death 
rate in predators can occur due to natural factors such as natural disasters, diseases, birth 
defects, and other factors that cannot be intervened. 

Functional forms of harvesting actions generally use the concept Catch-Per-Unit-Effort 
(CPUE). The assumption is that CPUE is proportional to the level of availability of fish species 
to be exploited. The intended harvesting function is written as follows, 

 
𝜋(𝑡) = 𝛿𝑑𝐸𝑧 (2) 
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C. RESULT AND DISCUSSION 

1. Predator-Prey Model 
Parameter 𝛿 is the catch coefficient of mature predatory species. While the combined 

efforts arrests used for the process of harvesting mature predator fish species is 𝐸. 
Parameters 𝑑 (0 < 𝑑 < 1) part of the available population for harvesting, this means that it is 
possible to control the harvesting area by considering the numerical assumption that 
parameter 𝑑 is in the range 0 to 1. Parameter that simplifies subsitusion 𝑤𝛽 and harvesting 
concepts from the model (1) and (2), 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝛽𝑥𝑧

𝑎 + 𝑏𝑥 + 𝑐𝑧
, 

𝑑𝑦

𝑑𝑡
=

𝜎𝑥𝑧

𝑎 + 𝑏𝑥 + 𝑐𝑧
− 𝑚𝑦 − 𝑛𝑦, 

𝑑𝑧

𝑑𝑡
= 𝑚𝑦 − 𝜌𝑧 − 𝛿𝑑𝐸𝑧, 

(3) 

where the initial conditions of the model meet the assumptions of 𝑥(0) ≥ 0, 𝑦(0) ≥
0, 𝑧(0) ≥ 0  and 0 < 𝑑 < 1 . The predator-prey population dynamics model with stage-
structure (3), the operational approach uses a differential equation solution by taking into 
account the dimensions of the parameters that have been taken. The dimensions of each 
parameter are taken based on actual assumptions in the ecosystem environment. 

 
Table 1. Definition of parameters in the model 

Parameter Definition Dimension 
𝑟 The intrinsic growth rate of prey [𝑇−1] 
𝑘 Carrying capacity [𝑁−1] 
𝛽 Predation rate by mature predators [𝑇]−2 
𝜎 The efficiency of prey-to-immature predator 

conversion 
[𝑇]−2 

𝑎 Catch rate on predation function [𝑁][𝑇]−1 
𝑏 Handling time on predation function [𝑁][𝑇]−1 
𝑐 Interference interaction rate in mature predators [𝑁][𝑇]−1 
𝑚 Rate of change from Immature predator to mature 

predator 
[𝑇−1] 

𝑛 Natural death of the immature predator [𝑇−1] 
𝜌 Natural death of the mature predator [𝑇−1] 
𝛿 Catch coefficient [𝑇−1] 
𝑑 Availability of population size - 
𝐸 Harvesting effort of mature predator - 

 
2. Equilibrium 

Analysis point 𝑊(𝑥, 𝑦, 𝑧) was carried out on model (2) by taking into account the rules of 

differential equations. Differential model (2) by considering  
𝑑𝑥

𝑑𝑡
= 0,

𝑑𝑦

𝑑𝑡
=  0 and  

𝑑𝑧

𝑑𝑡
=  0.  

from model (2) obtained four equilibrium points, 
a. 𝑊1(0,0,0), 
b. 𝑊2(𝑘, 0,0), 
c. 𝑊3(𝑥, 𝑦, 𝑧), 
d. 𝑊4(𝑥∗, 𝑦∗, 𝑧∗). 
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Respectively the equilibrium points 𝑊3(𝑥, 𝑦, 𝑧) , and  𝑊4(𝑥∗, 𝑦∗, 𝑧∗)  are positive and 
negative factors. Taking the positive equilibrium point becomes a very real decision to 
continue the calculation of the model (2). As for each positive equilibrium point 
𝑊4(𝑥∗, 𝑦∗, 𝑧∗) show as, 

 

𝑥∗ =
𝐴2 + √𝐴3

2 𝐴1
, 

𝑦∗ =
((−𝑏 + 𝜎)𝑚 − 𝑏𝑛𝜌)√𝐴3

2𝐴1𝑐𝑚(𝑚 + 𝑛)
+

((−2𝑎𝐴1 − 𝑏𝐴2) + 𝜎𝐴2)𝑚

2𝐴1𝑐𝑚(𝑚 +  𝑛)
−

𝑛𝜌(2𝑎𝐴1 +  𝑏𝐴2)

2𝐴1𝑐𝑚(𝑚 +)
𝑛, 

𝑧∗ =
(−𝑏𝜌(𝑚 +  𝑛) +  𝑚𝜎)√𝐴3

2𝐴1𝑐𝜌 (𝑚 +  𝑛)
−

2𝜌 (𝐴𝐴1 +
𝐴

2
𝐴2) (𝑚 +  𝑛) +  𝑚𝜎𝐴2

2𝐴1𝑐𝜌 (𝑚 +)
𝑛. 

 where, 
𝐴1 = 𝑐𝑚𝑟, 𝐴2 = 𝑏 𝑘𝑚𝜌 + 𝑏 𝑘𝑛𝜌 + 𝑐𝑘𝑚𝑟𝜎 − 𝛽𝑘𝑚𝜎, 𝐴3

= 𝑏2 𝛽2𝑘2𝑚2𝜌2 +  2𝑚𝑛𝑏2 𝛽2𝑘2𝜌2 + 𝑏2 𝛽2𝑘2𝑛2𝜌2 + 2𝑏𝛽𝑐𝑟𝜎𝜌𝑘2𝑚2 + 2𝑏𝛽𝑐𝑟𝜎𝜌𝑚𝑛𝑘2

+ 𝑐2 𝑘2𝑚2𝑟2𝜎2 + 4𝑎𝛽𝑐𝑘𝜎𝑟𝜌𝑚2 + 4𝑎𝛽𝑐𝑘𝜎𝑟𝜌𝑚𝑛 − 2 𝑏𝛽2𝑘2𝑚2 − 2 𝑏𝛽2𝑘2𝑚𝑛𝜎𝜌
− 2𝛽𝑐𝑟𝑘2𝑚2𝜎2 + 𝛽2𝑘2𝑚2𝜎2. 

 

In point form equilibrium which has been obtained that form √𝐴3 shows a positive result. 

Therefore the movement of value will go to positive roots. The equilibrium point analysis was 
determined using the Routh-Hurwitz criteria (Yulida & Karim, 2019). The Jacobi matrix used 
in the differential equation model (2) in testing the equilibrium point 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) is as 
follows, 

𝐽𝑗𝑎𝑐𝑜𝑏(𝑊4) = [
𝑗11 0 𝑗13

𝑗21 𝑗22 𝑗23

0 𝑗32 𝑗33

] 

where, 

𝑗11 = 𝑟 (1 −
𝑥∗

𝑘
) −

𝑟𝑥∗

𝑘
−  

𝛽𝑧∗

𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎
+

𝑏𝛽𝑥∗𝑧∗

(𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎)2
, 

𝑗13 = − 
𝛽𝑥∗

𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎
+

𝑐𝛽𝑥∗𝑧∗

(𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎)2
, 

𝑗21 =  
𝜎𝑥∗

𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎
−

𝑏𝑥∗𝑧∗

(𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎)2
, 

𝑗22 =  −𝑚𝑛, 

𝑗23 =  
𝜎𝑥∗

𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎
−

𝑐𝑥∗𝑧∗

(𝑏𝑥∗ + 𝑐𝑧∗ + 𝑎)2
, 

𝑗32 =  𝑚, 
𝑗33 =  −𝜌. 

 
The substitution of equilibrium point 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) performed on the Jacobian matrix will 

show the characteristic equation of model (2). The roots of the characteristic equation 
determine the equilibrium point of equilibrium. The characteristic equation 𝐽𝑗𝑎𝑐𝑜𝑏(𝑊4), 

 
𝜆3 + 𝑁1𝜆2 + 𝑁2 + 𝑁3 = 0, 

 
Equilibrium point 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) satisfies the local stable for the Routh-Hurwitz criterion, 

𝑁1 > 0, 𝑁2 > 0, 𝑁3 > 0 , and 𝑁1𝑁2 > 𝑁3. 
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3. Harvesting and Maximum Profit 
Stable equilibrium point will be used to obtain the rate of population harvesting rate and 

maximum profit. In model (3), consideration of harvesting has been given by adding the 
harvesting function 𝑑𝐸𝑧.  The equilibrium point 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) will be the test point for 
harvesting on the mature predator (𝑧∗).  While the profit function given is 𝑇𝑅 = 𝑝𝑧𝐸 where 𝑝 
is the price per unit of species biomass (Wang & Huang, 2014). The calculated expenditure 
function is 𝑇𝐶 =  𝑐𝐸, where 𝑐 is the constant value of the expenditure from each harvesting 
effort (Pratama et al., 2021). The profit function formed from the effort to harvest the mature 
prey population is, 

 
𝜋(𝐸) =  𝑝𝑧𝐸 − 𝑐𝐸, (4) 

 
Critical value of the profit function for the harvesting effort (𝐸) will be, the local maximum 

harvesting effort, 𝜋(𝐸) =  𝑝𝑧∗𝐸 − 𝑞𝐸. 
 

4. Numerical Simulation 
Simulation conducted in this research is to show the test of the specified parameters. 

Determination of parameter values is taken from assumptions that are in accordance with the 
actual conditions of the ecosystem environment (Li et al., 2017). The first simulation was 
carried out on model (2) without harvesting. 

Parameters 𝑟 = 1.5, 𝑘 = 100, = 0.8, = 0.04, 𝑎 = 10, 𝑏 = 8, 𝑐 = 6, 𝑚 = 0.0008, 𝑛 = 0.003  
and 𝜌 = 0.0002.  The resulting equilibrium points 𝑊4(𝑥∗, 𝑦∗, 𝑧∗)  arerespectively 
(92.823, 1311.489, 525.957).  The characteristic equation from the Jacobian matrix of the 
equilibrium point is,  

 
𝑓(𝜆) = 𝜆3 + 1.37688597 𝜆2 + 0.005488158𝜆 + 0.00000085 

 
From the characteristic equation, the Routh-Hurwitz criterion test is carried out and 

fulfills the form of eigenvalue 𝜆1 = −1.37189, 𝜆2 = −0.00016, 𝜆3 = − 0.00384.  Negative 
eigenvalues obtained from the point of equilibrium indicate that 𝑊4 is locally asymptotically 
stable. The stability of the equilibrium point provides an idea of the continuity of the species 
population for a long time. 

Simulation in model (3) was carried out to obtain stable harvesting data and optimal 
profit. The parameters taken in the harvesting function are 𝛿 = 0.2, 𝑑 = 0.4, 𝑝 = 100, and 𝑞 =
50. As for the equilibrium point at 𝑊4(𝑥∗, 𝑦∗, 𝑧∗)  with harvesting is a positive form. The profit 
function (4) on the harvesting effort of mature predators is shown as follows, 

 
𝜋(𝐸∗) = (100𝑧∗ − 50)𝐸, (5) 
 
with the profit function (5) the harvesting effort value is obtained from the differential 
equation of the profit function, namely 𝐸∗ =  0.0033. The harvesting effort obtained is the 
local stable point of the profit function.  

The maximum local profit obtained is 𝜋 = 52.359. The equilibrium point 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) 
associated with the critical point of harvesting effort in a model (3) is 
(95.062, 92.639, 160.466). The characteristic equation of the equilibrium point Jacobian 
matrix is 𝑓(𝜆) = 𝜆3 + 1.3977032 𝜆2 + 0.0059396 𝜆 + 0.0000014, with eigenvalues of 𝜆1 =
−1.39344, 𝜆2 = −0.00401, 𝜆3 = −0.00025. The results of the final eigenvalues obtained show 
that 𝑊4(𝑥∗, 𝑦∗, 𝑧∗) is an asymptotically stable equilibrium. This condition will show that the 
prey and predator populations are stable for a long period of time. 
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The numerical simulation is to take the value around the equilibrium point which will 
show the population growth curve in a long time. The initial values taken are 𝑥(0) =
 20, 𝑦(0) =  10, and 𝑧(0) =  30. The curves of prey, immature predatory, and mature predator 
populations of Olive fish species will be shown before and after harvesting. 
 

 
Figure 1. Trajectories for population 𝑥 with and without harvesting. 

 

 
Figure 2. Trajectories for population 𝑦 with and without harvesting. 
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Figure 3. Trajectories for population 𝑧 with and without harvesting. 

  
Figures 1, 2, and 3 show that the curves of all populations continue to grow upward and 

persist over a long period of time. Changes in the equilibrium point in the mathematical model 
of Olive fish without harvesting 𝑊4 = (92.823, 1311.489, 525.957), and the equilibrium point 
with harvesting 𝑊4 = (95.062, 92.639, 160.466). The value of the equilibrium point in prey 
fish species increases with harvesting. In populations of immature predatory fish species and 
matures, the equilibrium point has decreased. The behavior of harvesting or catching carried 
out on mature Oliv fish species, apparently affects the number of species in the carrying 
capacity area, but has the survival of the species in the long term. 
 
 
D. CONCLUSION AND SUGGESTIONS 

One mathematical model of the predator-prey population with step structure for 
predatory population and Beddington DeAngelis response function has been developed by 
adding selective harvesting of mature predatory populations. In the mathematical model (3), 
four equilibrium points are found, but only one is possible to be an interior equilibrium. 
Taking parameters that match the interior equilibrium point without harvesting local stables. 

Mathematical model with constant harvesting effort, a stable equilibrium point is then 
associated with the problem of maximizing the profit function. The test results of model (3) 
provide maximum profit and the interior equilibrium point remains stable for a long period of 
time. This shows that efforts to continue to preserve endemic Olive fish species can be carried 
out, and harvesting is carried out to produce maximum profits for a long period of time. Of 
course, this will provide a mathematical picture for policymakers to make decisions. Increase 
the productivity of people's income economically and maintain the extinction of the Oliv fish 
species as an endemic fish in Merauke Regency. Future research can pay attention to 
mathematical models on endemic species, this is done because species that require more 
attention for sustainability around the environment. Mathematical models can be adopted 
with prey and super predator variables. 
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