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 The research in graph theory has been widened by combining it with ring. In this 
paper, we introduce the definition of a non-braid graph of a ring.  The non-braid 

graph of a ring 𝑅, denoted by Υ𝑅 , is a simple graph with a vertex set 𝑅\𝐵(𝑅), 
where 𝐵(𝑅) is the set of 𝑥 where 𝑥 ∈ 𝑅 such that 𝑥𝑦𝑥 = 𝑦𝑥𝑦 for all 𝑦 ∈ 𝑅.  Two 
distinct vertices 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑦.  The method that 
we use to observe the non-braid graphs of ℤ𝑛 is by seeing the adjacency of the 
vertices and its braider.  The main objective of this paper is to prove the 
completeness and connectedness of the non-braid graph of ring ℤ𝑛. We prove that 
if 𝑛 is a prime number, the non-braid graph of ℤ𝑛 is a complete graph. For all 𝑛 ≥
 3,  the non-braid graph of ℤ𝑛 is a connected graph. 
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A. INTRODUCTION  
Some different areas in mathematics can be combined due to obtaining some interesting 

tools. A new interdisciplinary branch in mathematics such as algebraic graphs recently has 

powerful progress, in which involves graph theory and some algebraic structures. Associating 

a graph with an algebraic structure is a research subject that aims at exposing the relationship 

between algebra and graph theory and at advancing applications of one to the other (Maimani 

et al., 2011).  There are plenty of results in associating a graph with an algebraic structure, 

some of them are in (Ghalandarzadeh & Rad, 2011), (Ma et al., 2014), and (Taloukolaei & 

Sahebi, 2018) which results in associating a graph with the module, group, and ring, 

respectively. 

Among many results in associating a graph with the group, we mention for example 

Abdolahi et al. (2006), who discuss the non-commuting graph of a group. They explore how 

the graph-theoretical properties of the non-commuting graph of a group 𝐺 can affect the 

group-theoretical properties of 𝐺. Some important results are the number of edges of the non-

commuting graph shows the association of a group to the graph, the number of edges of the 

non-commuting graph and commutativity degree are in the opposite proportion (Abdollahi et 

al., 2006). Furthermore, Tolue et al. (2014) introduce a more general situation by defining the 

http://journal.ummat.ac.id/index.php/jtam
mailto:era.setya.cahyati@mail.ugm.ac.id
mailto:rizkaabid@mail.ugm.ac.id
mailto:anandityadwi97@mail.ugm.ac.id
mailto:ind_wijayanti@ugm.ac.id


  Era Setya Cahyati, Non-Braid Graphs...    107 

 

 

𝑔-non-commuting graph of finite groups and investigating its planarity and regularity, its 

clique number, and dominating number.  

Some authors also pay attention to the observation of graphs and rings. For a ring 𝑅, Gupta 

(2013) defined a simple undirected graph Γ2(𝑅) with all the non-zero elements of 𝑅 as 

vertices, and two vertices 𝑎, 𝑏 are adjacent if and only if either 𝑎𝑏 = 0 or 𝑏𝑎 = 0 or 𝑎 + 𝑏 is a 

zero-divisor (including 0). He considers the connectedness and completeness of Γ2(ℤn). Omidi 

and Vatandoost (2011) introduce the commuting graph of the ring R. Let R be a non-

commutative ring and let Z(R) denote the center of R. The commuting graph of R denoted by 

Γ(R), is a graph with vertex set R\Z(R) and two vertices a and b are adjacent if ab =  ba 

(Omidi & Vatandoost, 2011). The complement of commuting graph of the ring R is considered 

by Erfanian et al. (2015). They introduce the non-commuting graph of ring R and study 

various graph-theoretical properties of this graph. Let 𝑅 be the non-commutative ring and 

𝐶(𝑅) is the centre of 𝑅. The non-commuting graph of ring 𝑅, denoted by ΓR, is a simple graph 

whose vertex set is 𝑅\𝐶(𝑅) and two distinct vertices 𝑥 and 𝑦 are connected by one edge if and 

only if 𝑥𝑦 ≠ 𝑦𝑥 (Erfanian et al., 2015). Some further results regarding the non-commuting 

graph of a ring are conducted by Dutta and Basnet (2017a). They prove that ΓR is not 

isomorphic to certain graphs of any finite non-commutative ring 𝑅. Moreover, some 

connections between ΓR and the commuting probability of 𝑅 are also obtained. It is shown 

that the non-commuting graphs of two ℤ-isoclinic rings are isomorphic if the centres of the 

rings have the same order (Dutta & Basnet, 2017a). Recall that two rings 𝑅1 and 𝑅2 are said to 

be ℤ-isoclinic if there exist additive group isomorphisms 𝜙:
𝑅1

𝑍(𝑅1)
→

𝑅2

𝑍(𝑅2)
 and 𝜓: [𝑅1, 𝑅1] →

[𝑅2, 𝑅2] such that 𝜓([𝑢, 𝑣]) = [𝑢′, 𝑣′] whenever 𝜙(𝑢 + 𝑍(𝑅1)) = 𝑢′ + 𝑍(𝑅2) and 𝜙(𝑣 +

𝑍(𝑅1)) = 𝑣′ + 𝑍(𝑅2)  (Dutta et al., 2015).  

Dutta and Basnet (2017b) introduce a generalization of the non-commuting graph for the 

ring, namely the relative non-commuting graph of a finite ring. Let 𝑆 be a subring of a finite 

ring 𝑅 and 𝐶𝑅(𝑆) = {𝑟 ∈ 𝑅 ∶ 𝑟𝑠 = 𝑠𝑟 ∀ 𝑠 ∈ 𝑆}. The relative non-commuting graph of the 

subring 𝑆 in 𝑅, denoted by Γ𝑆,𝑅 , is a simple undirected graph whose vertex set is 𝑅\𝐶𝑅(𝑆) and 

two distinct vertices 𝑎, 𝑏 are adjacent if and only if 𝑎 or 𝑏 ∈ 𝑆 and 𝑎𝑏 ≠ 𝑏𝑎 (Dutta & Basnet, 

2017b). They discuss some properties of Γ𝑆,𝑅 , determine the diameter, girth, some dominating 

sets, and chromatic index for Γ𝑆,𝑅. Another generalization of non-commuting graph for ring is 

introduced by Nath et al. (2021), namely the 𝑟-non-commuting graph of a finite ring 𝑅, for 

some 𝑟 in 𝑅.  This graph, which is denoted by Γ𝑅
𝑟 , is a simple undirected graph whose vertex 

set is 𝑅 and two vertices 𝑥 and 𝑦 are adjacent if and only if [x, y] ≠ r and [x, y] ≠  −r (Nath et 

al., 2021). Nath et al. prove that Γ𝑅
𝑟  is neither a regular graph nor a lollipop graph if 𝑅 is non-

commutative. Moreover, they characterize the finite non-commutative ring such that Γ𝑅
𝑟  is a 

tree or a star graph.  

For the detailed explanation of some notions in graph theory, we refer to (Chartrand et al., 

2015) and (Wilson, 2010). Allcock (2002) introduced the notion of the braid. Two group 

elements 𝑥 and 𝑦 braid, if they satisfy 𝑥𝑦𝑥 = 𝑦𝑥𝑦 (Allcock, 2002). In other words, two group 

elements 𝑥 and 𝑦 non-braid, if they satisfy 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑦. So far, there is no graph representing 

the non-braid property of two elements in ring 𝑅. Hence, in this paper, we will define a graph 

that represents that property. 
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By adopting the concept of defining the non-commuting graph of ring 𝑅, we define a non-

braid graph of the ring 𝑅 based on the non-braid property of two elements in ring 𝑅 under 

multiplication. We introduce the definition of a non-braid graph of the ring as follows. Let 

𝑅 be a ring and 𝐵(𝑅)  = {𝑥 ∈ 𝑅 |∀𝑦 ∈ 𝑅, 𝑥𝑦𝑥 = 𝑦𝑥𝑦}. We called 𝐵(𝑅) as the braider of 𝑅. The 

non-braid graph of  𝑅, denoted by Υ𝑅 , is a simple graph whose vertex set is 𝑅\𝐵(𝑅). Two 

distinct vertices 𝑥 and 𝑦 are connected by an edge if and only if 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑦. The vertices 𝑥 and 

𝑦 that satisfy these condition is denoted by 𝑥 ∼ 𝑦.  

Since the non-commuting graph of ring 𝑅 cannot be constructed for the commutative ring, 

we are interested to investigate the existence of a non-braid graph of a commutative ring, 

Example of a commutative ring is ring ℤ𝑛 (Malik et al., 1997). Some authors already associated 

a graph with ring ℤ𝑛 , as in (Chelvam & Asir, 2011), (Patra & Kalita, 2014), (Pirzada et al., 

2020), and (Aditya & Muchtadi-Alamsyah, 2021). In this paper, we discuss the non-braid 

graph of ring ℤ𝑛 . It is important to know the kind of non-braid graph based on 𝑛 of ℤ𝑛 . Hence 

as the purpose of the study we observe the relationships of 𝑛 and the completeness and 

connectedness of the graph. We show sufficient condition of 𝑛 such that the non-braid graph 

of ℤ𝑛 is complete and prove that all Υℤ𝑛
 is connected. 

 
B. RESULT AND DISCUSSION 

Gupta (2013) defined a simple undirected graph Γ2(𝑅) and determined the connectedness 

of Γ2(ℤ𝑛  ). In this paper, we conduct a research in connectedness and completeness of non-

braid graph of ring ℤ𝑛 . The notion of non-braid graph is motivated by commuting graph from 

Omidi and Vatandoost (2011) and the non-commuting graph from Erfanian et al. (2015). 

 

1. Definition of Non-braid Graph 

In this section, we define a non-braid graph of ring 𝑅. 

Definition 2.1. Let 𝑅 be a ring and 𝐵(𝑅) = {𝑥 ∈ 𝑅 | ∀𝑦 ∈ 𝑅, 𝑥𝑦𝑥 =  𝑦𝑥𝑦}. A non-braid graph 

of ring 𝑅, denoted by Υ𝑅 , is a simple graph whose vertex set is 𝑅\𝐵(𝑅). Two distinct vertices 𝑥 

and 𝑦 are connected by an edge if and only if 𝑥𝑦𝑥 ≠ 𝑦𝑥𝑦. Furthermore, 𝑥 and 𝑦 that satisfy this 

condition is denoted by 𝑥~𝑦. 

For a special case, we discuss the non-braid graph of ring ℤ𝑛which is denoted by Υℤ𝑛
. We 

start by investigating the existence of a non-braid graph of ring ℤ𝑛 . We take a note for 𝑛 = 1, 

that is ℤ1 = {0̅}. It is clear that 𝐵(ℤ1) = {0̅}, so we get 𝑉 (Υℤ1
)  =  ℤ1\𝐵(ℤ1) = ∅. However, 

𝑉(Υℤ1
) cannot be empty, meaning that a non-braid graph of ℤ1 cannot be formed. We then 

take a note for 𝑛 = 2, that is ℤ2 = {0̅, 1̅}. Since 0̅0̅0̅ = 0̅0̅0̅, 0̅1̅0̅ = 1̅0̅1̅, and 1̅1̅1̅ = 1̅1̅1̅, so 

𝐵(ℤ2) = {0̅, 1̅}, which results in 𝑉 (Υℤ2
)  =  ℤ2\𝐵(ℤ2) = ∅. However, 𝑉(Υℤ2

)  cannot be empty, 

which means that a non-braid graph of ℤ2 cannot be constructed. 

 

In Proposition 2.1, we explain the non-braid graph of ℤ𝑛 where 𝑛 ≥ 3. 

Proposition 2.1. If n ≥ 3, then 𝑉 (Υℤ𝑛
) ≠ ∅. Furthermore, Υℤn

 is not a null graph. Proof. 

Suppose that 𝑛 ≥ 3. We will show that 𝑉 (Υℤ𝑛
) ≠ ∅. Let 1̅, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ ∈ ℤ𝑛 . Since 𝑛 ≥ 3, then 1̅ ≠

𝑛 − 1̅̅ ̅̅ ̅̅ ̅. We know that  1̅ and 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ are self-inverse elements, then 1̅𝑛 − 1̅̅ ̅̅ ̅̅ ̅1̅ = 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ and 

𝑛 − 1̅̅ ̅̅ ̅̅ ̅1̅𝑛 − 1̅̅ ̅̅ ̅̅ ̅ = 1̅ , which implies 1̅𝑛 − 1̅̅ ̅̅ ̅̅ ̅1̅ ≠ 𝑛 − 1̅̅ ̅̅ ̅̅ ̅1̅𝑛 − 1̅̅ ̅̅ ̅̅ ̅. Hence, 1̅, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ ∈ 𝐵(ℤ𝑛). Since 
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𝑉 (Υℤ𝑛
)  =  ℤ𝑛\𝐵(ℤ𝑛) and 1̅, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ ∈ 𝐵(ℤ𝑛), then 1̅, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅  ∈ 𝑉 (Υℤ𝑛

) . In other words, 

𝑉 (Υℤ𝑛
)  ≠ ∅. Furthermore, since 1̅𝑛 − 1̅̅ ̅̅ ̅̅ ̅1̅ ≠ 𝑛 − 1̅̅ ̅̅ ̅̅ ̅1̅𝑛 − 1̅̅ ̅̅ ̅̅ ̅, then on Υℤ𝑛

, vertex 1̅ is adjacent to 

vertex 𝑛 − 1̅̅ ̅̅ ̅̅ ̅. Hence, Υℤ𝑛
 is not a null graph.       ∎ 

Since non-braid graph Υℤ𝑛
 can only be constructed for 𝑛 ≥ 3, throughout we assume ℤ𝑛 where 

𝑛 ≥ 3. 

 
2. Completeness of The Non-braid Graph 𝚼 ℤ𝒏

 

We give some results regarding the completeness of the non-braid graph Υ ℤ𝑛
. 

Example 2.1. For every 𝑥 ∈ ℤ6, we get 𝑥 0 𝑥 = 0 𝑥 0, so 0 ∈ 𝐵(ℤ6). Then, the result of 𝑥 𝑦 𝑥 and 

𝑦 𝑥 𝑦 for every 𝑥, 𝑦 ∈ ℤ6 ∖ {0} where 𝑥 ≠ 𝑦 is shown on Table 1. 

 

Table 1. The result of 𝑥 𝑦 𝑥 and 𝑦 𝑥 𝑦 for every 𝑥, 𝑦 ∈ ℤ6 ∖ {0} where 𝑥 ≠ 𝑦 
𝒙  𝒚 𝒙 𝒚 𝒙 𝒚 𝒙 𝒚 Description 

1 2 2 4 1 ∼ 2 

1 3 3 3 1 ≁ 3 

1 4 4 4 1 ≁ 4 

1 5 5 1 1 ∼ 5 

2 3 0 0 2 ≁ 3 

2 4 4 2 2 ∼ 4 

2 5 2 2 2 ≁ 5 

3 4 0 0 3 ≁ 4 

3 5 3 3 3 ≁ 5 

4 5 2 4 4 ∼ 5 

 

Based on Table 1, we have 3 ∈ 𝐵(ℤ6), so the vertex set of non-braid graph Υℤ6
 is 𝑉(Υℤ6

) =

ℤ6 ∖ 𝐵(ℤ6) = {1, 2, 4, 5}. Furthermore, the edge set of non-braid graph  Υℤ6
 is 𝐸(Υℤ6

) =

{(1, 2), (1, 5), (2, 4), (4, 5)}, so we get a non-braid graph Υℤ6
 which is illustrated by Figure 1. 

 
Figure 1. Non-braid Graph Υℤ6

 

 

Example 2.2. For every 𝑥 ∈ ℤ4, we get 𝑥 0 𝑥 = 0 𝑥 0, so 0 ∈ 𝐵(ℤ4). Then, the result of 𝑥 𝑦 𝑥 and 

𝑦 𝑥 𝑦 for every 𝑥, 𝑦 ∈ ℤ4 ∖ {0} where 𝑥 ≠ 𝑦 is shown on Table 2.  

 

Table 2. The result of 𝑥 𝑦 𝑥 and 𝑦 𝑥 𝑦 for every 𝑥, 𝑦 ∈ ℤ4 ∖ {0} where 𝑥 ≠ 𝑦 
𝒙  𝒚 𝒙 𝒚 𝒙 𝒚 𝒙 𝒚 Description 

1 2 2 0 1 ∼ 2 

1 3 3 1 1 ∼ 3 

2 3 0 2 2 ∼ 3 
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Based on the Table 2, we get that all vertices are adjacent to others. So, we get a non-braid 

graph Υℤ4
 illustrated by Figure 2.  

 
Figure 2. Non-braid graph Υℤ4

 

 

Examples 2.1 and 2.2 show us that for any number 𝑛, we cannot obtain a certain non-braid 

graph, it could be complete or not. Hence in general, a non-braid graph Υℤ𝑛
 is not always a 

complete graph. However, we prove that it is complete when 𝑛 is a prime number, as we give 

in the following theorem. 

 

Theorem 2.2. If 𝑝 is prime, then Υℤ𝑝
 is a complete graph.  

Proof. Let 𝑥, 𝑦 ∈ ℤ𝑝 ∖ 𝐵(ℤ𝑝) where 𝑥 ≠ 𝑦. We will show that 𝑥 ∼ 𝑦. Assume that 𝑥 ≁ 𝑦. It 

means 𝑥𝑦𝑥 = 𝑦𝑥𝑦. Since ℤ𝑝 is a field, the cancellation properties hold and we get 𝑥 = 𝑦. This 

contradicts the hypothesis. Hence, 𝑥 ∼ 𝑦.  ∎  

 

The following is an example of a non-braid graph of ring ℤ7 which is a complete graph.  

Example 2.3. For every x ∈ ℤ7, we get x 0 x = 0 x 0, so 0 ∈ B(ℤ7). Then, the result of x y x and 

y x y for every x, y ∈ ℤ7 ∖ {0} where x ≠ y is shown in Table 3. 

 

Table 3. The result of 𝑥 𝑦 𝑥 and 𝑦 𝑥 𝑦 for every 𝑥, 𝑦 ∈ ℤ7 ∖ {0} where 𝑥 ≠ 𝑦 
𝒙  𝒚 𝒙 𝒚 𝒙 𝒚 𝒙 𝒚 Description 

1 2 2 4 1 ∼ 2 

1 3 3 2 1 ∼ 3 

1 4 4 2 1 ∼ 4 

1 5 5 4 1 ∼ 5 

1 6 6 1 1 ∼ 6 

2 3 5 4 2 ∼ 3 

2 4 2 4 2 ∼ 4 

2 5 6 1 2 ∼ 5 

2 6 3 2 2 ∼ 6 

3 4 1 6 3 ∼ 4 

3 5 3 5 3 ∼ 5 

3 6 5 3 3 ∼ 6 

4 5 3 2 4 ∼ 5 

4 6 5 4 4 ∼ 6 

5 6 3 5 5 ∼ 6 
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Based on Table 3, we get that all vertices are adjacent to others. So, we get a non-braid 

graph Υℤ7
 illustrated by Figure 3. 

 
Figure 3. Non-braid graph Υℤ7

 

 
3. Braider of ℤ𝑛 

Regarding of connection of non-braid graph Υℤ𝑛
 we start to find out the braider of ℤ𝑛 . To 

begin with, we study a useful property of ring ℤ𝑛 for finding out the braider of ℤ𝑛 .  

 

Lemma 2.3. Let ℤ2𝑚  be a ring where 𝑚 ∈ ℕ and m > 1. The number 𝑚 is odd if and only if 𝑚 

is an idempotent element. 

Proof. (⇒) We show that 𝑚 is an idempotent element by showing that 𝑚
2

= 𝑚. Since m is 

odd and 𝑚 > 1, then 𝑚 = 2𝑘 + 1 for some 𝑘 ∈ ℕ. Note that 

𝑚2 − 𝑚 = 𝑚(𝑚 − 1) = 𝑚(2𝑘 + 1 − 1) = 𝑚(2𝑘) = (2𝑚)𝑘 

thus 𝑚2 − 𝑚 = 0 and 𝑚
2

= 𝑚. 

(⇐) Suppose that 𝑚 is an idempotent element. Assume that 𝑚 is an even number. Then, 

there is 𝑘 ∈ ℕ such that 𝑚 =  2𝑘. Note that 

𝑚 = 𝑚
2

= (2𝑘)2 = 𝑘(2(2𝑘)) = 𝑘(2𝑚) = 𝑘2𝑚 = 0 

It means that there is l ∈ ℤ such that m = l(2m). Then, we obtain 

𝑚 = 𝑙(2𝑚) ⟺ 𝑚(2𝑙 − 1) = 0 ⟺ 𝑚 = 0 or 2𝑙 − 1 = 0. 

Since there is no 𝑙 ∈ ℤ such that 2𝑙 =  1, we have 𝑚 = 0. Contradicts to the hypothesis 

that 𝑚 ≠ 0. Hence, 𝑚 must be an odd number.  ∎ 

The results of the braider of ℤ𝑛 for 𝑛 = 1, … , 10 are given in the following table: 

 

Table 4. The braider of ℤ𝑛 for 𝑛 = 1, … , 10 
𝒏 𝑩(ℤ𝒏) 

1 {0} 

2 {0, 1} 

3 {0} 

4 {0} 

5 {0} 

6 {0, 3} 

7 {0} 

8 {0} 

9 {0} 
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10 {0, 5} 

 
By using Lemma 2.3, we have the following result of the braider of ℤ𝑛 for every 𝑛 ∈ ℕ. 

Lemma 2.4. If  𝑛 ∈ ℕ, then 

𝐵(ℤ𝑛) = {
{0, �̅�}, 𝑛 = 2𝑚 where 𝑚 is odd 

{0}, otherwise.
 

Proof. Suppose 𝑛 ∈ 𝑁, then we have the following result: 

a. For 𝑛 ≠ 2𝑚 where 𝑚 is odd, we will show that 𝐵(ℤ𝑛) = {0}. Consider that 0 ∈ 𝐵(ℤ𝑛), 

because for every 𝑥 ∈ ℤ𝑛 , we get 𝑥 0 𝑥 = 𝑥0𝑥 = 0 = 0𝑥0 = 0 𝑥 0. Thus, we have {0} ⊆

𝐵(ℤ𝑛). Next, we will show that 𝐵(ℤ𝑛) ⊆ {0}. Assume that 𝐵(ℤ𝑛) ⊈ {0}. It means that 

there is 𝑥 ≠ 0 such that 𝑥 ∈ 𝐵(ℤ𝑛). 

Case 1. If 𝑥 is not an idempotent element, then there is 1 ∈ ℤ𝑛 such that 1 𝑥 1 = 𝑥 and 

𝑥 1 𝑥 = 𝑥
2
. Since 𝑥 is not an idempotent element, 𝑥

2
≠ 𝑥, which results in 1 𝑥 1 ≠ 𝑥 1 𝑥. 

Case 2. If 𝑥 is an idempotent element, then we claim that there is 𝑛 − 1 ∈ ℤ𝑛 such that 

𝑛 − 1 𝑥 𝑛 − 1 ≠ 𝑥 𝑛 − 1 𝑥. Assume that 𝑛 − 1 𝑥 𝑛 − 1 = 𝑥 𝑛 − 1 𝑥. Since 𝑥 is an 

idempotent element, we have 

𝑛 − 1 𝑥 𝑛 − 1 = 𝑥 𝑛 − 1 𝑥 

𝑛 − 1
2

 𝑥 = 𝑥
2
 𝑛 − 1 

1 𝑥 = 𝑥 𝑛 − 1 

𝑥 = 𝑥(𝑛 − 1) 

𝑥 = 𝑥𝑛 − 𝑥 

𝑥 = 𝑥𝑛 − 𝑥 

𝑥 = −𝑥 

𝑥 + 𝑥 = 𝑥 − 𝑥 

2𝑥 = 0 … (1) 

Subsequently, since 𝑛 ≠ 2𝑚 where 𝑚 is odd, there are two possibilities for the value of 

𝑛, namely, 𝑛 is odd or 𝑛 = 2𝑘 where 𝑘 is even and 𝑘 ≠ 0. It is obvious that for odd 𝑛, 

there is no 𝑥 that satisfies 2𝑥 = 0, which is a contradiction. Next, for 𝑛 = 2𝑘 where 𝑘 is 

even and 𝑘 ≠ 0. It is clear that 𝑥 which satisfies 2𝑥 = 0 is only 𝑥 = 𝑘. Since 𝑥 = 𝑘 is an 

idempotent element, by Lemma 2.3, we get that 𝑘 is odd, which is a contradiction. 

Hence, it is proven that 𝑛 − 1 𝑥 𝑛 − 1 ≠ 𝑥 𝑛 − 1 𝑥. 

By cases 1 and 2, we obtain that every 𝑥 ≠ 0 satisfies 𝑥 ∉ 𝐵(ℤ𝑛) which is a 

contradiction. Thus, we have 𝐵(ℤ𝑛) ⊆ {0}. Hence, it is proven that 𝐵(ℤ𝑛) = {0}. 

b. For 𝑛 = 2𝑚 where m odd, we will show that 𝐵(ℤ2𝑚) = {0, 𝑚}. It is clear that 0 ∈

𝐵(ℤ2𝑚). We will show that 𝑚 ∈ 𝐵(ℤ2𝑚), by showing that 𝑚 𝑥 𝑚 = 𝑥 𝑚 𝑥 for every 𝑥  ∈

 ℤ2𝑚 . 

Case 1. For 𝑥 = 2𝑎 where 𝑎 ∈ ℤ, we get 𝑥 𝑚 = 0, so 𝑚 𝑥 𝑚 = 𝑥 𝑚 𝑥. 

Case 2. For 𝑥 = 2𝑎 + 1 where 𝑎 ∈ ℤ, we will show that  𝑚 𝑥 𝑚 = 𝑥 𝑚 𝑥.  

Note that, by Lemma 2.3, we have 
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𝑚 𝑥 𝑚 = 𝑥 𝑚 𝑥  ⇔  𝑚2𝑥 = 𝑥2𝑚  ⇔  𝑚𝑥 = 𝑥2𝑚  ⇔  𝑚(2𝑎 + 1) = (2𝑎 + 1)2𝑚. 

Thus, it is equivalent to show that 𝑚(2𝑎 + 1) = (2𝑎 + 1)2𝑚. Subsequently, 

(2𝑎 + 1)2𝑚 − 𝑚(2𝑎 + 1) = 𝑚(2𝑎 + 1)(2𝑎 + 1 − 1) 

= 𝑚(2𝑎 + 1)(2𝑎) 

= (2𝑚)(2𝑎2 + 𝑎) 

 

so (2𝑎 + 1)2𝑚 − 𝑚(2𝑎 + 1) = 0, which result in 𝑚(2𝑎 + 1) = (2𝑎 + 1)2𝑚. 

By cases 1 and 2, it is proven that 𝑚 ∈ 𝐵(ℤ2𝑚). Hence {0, 𝑚} ⊆ 𝐵(ℤ2𝑚). 

Next, we show that 𝐵(ℤ2𝑚) ⊆ {0, 𝑚}. Assume that 𝐵(ℤ2𝑚) ⊈ {0, 𝑚}. It means that there 

is 𝑥 ∈ 𝐵(ℤ2𝑚), but 𝑥 ∉ {0, 𝑚}. If 𝑥 is not an idempotent element, then there is 1 ∈ ℤ2𝑚  

such that 1 𝑥 1 ≠ 𝑥 1 𝑥. If 𝑥 is an idempotent element, then we claim that there is 

𝑛 − 1 ∈ ℤ2𝑚  such that 𝑥 𝑛 − 1 𝑥 ≠ 𝑛 − 1 𝑥 𝑛 − 1. Assume 𝑥 𝑛 − 1 𝑥 = 𝑛 − 1 𝑥 𝑛 − 1. By 

equation (1), 𝑥 satisfies 2𝑥 = 0. We notice that 𝑥 which satisfies 2𝑥 = 0 is only 𝑥 = 𝑚, 

but 𝑥 ≠ 𝑚. So, it is proven that 𝑥 𝑛 − 1 𝑥 ≠ 𝑛 − 1 𝑥 𝑛 − 1. Therefore, 𝑥 ∉ 𝐵(ℤ2𝑚) is a 

contradiction. Thus, we have  𝐵(ℤ2𝑚) ⊆ {0, 𝑚}.  

Hence, it is proven that 𝐵(ℤ2𝑚) = {0, 𝑚}. ∎ 

 

4. The Connectedness of The Non-braid Graph 𝚼ℤ𝒏
 

Now we study the adjacency properties of two vertices that will be useful for investigating 

the connection of non-braid graph Υℤ𝑛
. We will find out which vertices are always adjacent to 

each other or not. We find that the adjacency of a vertex depends on whether it is an 

idempotent element or not. In the next two following lemma we will give the adjacency of 

idempotent element. We start by showing the necessary and sufficient condition of adjacency 

for any vertex with vertex 1.  

 

Lemma 2.5. Let 𝑥 ∈ ℤ𝑛 ∖ 𝐵(ℤ𝑛). Vertex 𝑥 is adjacent to vertex 1 if and only if 𝑥 is not an 

idempotent element. 

Proof. (⇒) Suppose vertex 𝑥 is adjacent to vertex 1. It means that 𝑥 1 𝑥 ≠ 1 𝑥 1. Thus, 𝑥
2

≠

𝑥. In other words, 𝑥 is not an idempotent element. 

(⇐) Suppose 𝑥 is not an idempotent element. Note that 1 𝑥 1 = 𝑥 and 𝑥 1 𝑥 = 𝑥
2
. Since 𝑥 is 

not an idempotent element, then 𝑥
2

≠ 𝑥, which implies 1 𝑥 1 ≠ 𝑥 1 𝑥. Hence, vertex 𝑥 is 

adjacent to vertex 1.  ∎ 

By Lemma 2.5, we can conclude that the vertex 𝑥 which is not an idempotent element is 

adjacent to 1. Next, we give the result of the adjacency property for the vertex 𝑥, which is an 

idempotent element.  

 

Lemma 2.6. Let 𝑥 ∈ ℤ𝑛 ∖ 𝐵(ℤ𝑛). If 𝑥 is an idempotent element, then vertex 𝑥 is adjacent to 

vertex 𝑛 − 1. 

Proof. Suppose 𝑥 is an idempotent element. We will show that vertex 𝑥 is adjacent to 

vertex 𝑛 − 1. For 𝑛 ≠ 2𝑚 where 𝑚 is odd, by the proof of Lemma 2.4, point 1, case 2, we have 
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𝑥 𝑛 − 1 𝑥 ≠ 𝑛 − 1 𝑥 𝑛 − 1. Hence, vertex 𝑥 is adjacent to vertex 𝑛 − 1. Next, for 𝑛 =  2𝑚 where 

𝑚 is odd. Assume that 𝑥 𝑛 − 1 𝑥 = 𝑛 − 1 𝑥 𝑛 − 1. Since 𝑥 is an idempotent element, then 𝑥 

satisfies 2𝑥 = 0 by equation 1. It is clear that 𝑥 which satisfies 2𝑥 = 0 is only 𝑥 = 𝑚. By 

Lemma 2.4, point 2, we have 𝑥 = 𝑚 ∈ 𝐵(ℤ𝑛), which is a contradiction. Hence, for 𝑛 =  2𝑚 

where 𝑚 is odd, we have 𝑥 𝑛 − 1 𝑥 ≠ 𝑛 − 1 𝑥 𝑛 − 1 and consequently, vertex 𝑥 is adjacent to 

vertex 𝑛 − 1. Therefore, it is proven that vertex 𝑥 is adjacent to vertex 𝑛 − 1.  ∎ 

Adjacency of any vertices depends on not only an idempotent element, but also a unit 

element. In the following lemma, we show the adjacency properties of two vertices, which are 

unit elements.   

 

Lemma 2.7. Let 𝑢, 𝑦 ∈ ℤ𝑛 ∖ 𝐵(ℤ𝑛). If 𝑢 and 𝑦 are unit elements where 𝑢 ≠ 𝑦, then vertex 𝑢 is 

adjacent to vertex 𝑦. 

Proof. Suppose 𝑢 and 𝑦 are unit elements where 𝑢 ≠ 𝑦. Assume that vertex 𝑢 is not 

adjacent to vertex 𝑦. It means that 𝑢 𝑦 𝑢 = 𝑦 𝑢 𝑦. Note that 

u y u = y u y 

u u y = u y y 

u
−1

 u u y y
−1

= u
−1

 u y y y
−1

 

u = y 

This is a contradiction. Hence, vertex u is adjacent to vertex y.  ∎ 

By using Lemma 2.5, 2.6, and 2.7, we give the result of the connection of non-braid graph Υℤ𝑛
 

for any 𝑛. 

 

Theorem 2.8. If 𝑛 ≥ 3, then Υℤn
 is a connected graph. 

Proof. Let 𝑥, 𝑦 ∈ ℤ𝑛 ∖ 𝐵(ℤ𝑛) where 𝑥 ≠ 𝑦. We will show that there is a path from vertex 𝑥 to 

vertex 𝑦. We consider two cases. 

Case 1. If 𝑥 and 𝑦 are unit elements, then by Lemma 2.7, vertex 𝑥 is adjacent to vertex 𝑦. 

Case 2. For 𝑥 or 𝑦 which is a zero-divisor.  

Without loss of generality, suppose 𝑥 is a zero-divisor. Since every element of ℤ𝑛  is either an 

idempotent element or not, then zero-divisor 𝑥 is either an idempotent element or not. By 

Lemma 2.5, 2.6, 2.7, we have the following result. If 𝑥 is not an idempotent element, then 

a. for a zero-divisor 𝑦 which is not an idempotent element or 𝑦 which is a unit element 

where 𝑦 ≠ 1, we can construct a path 

𝑥 − 1 − 𝑦, …(2) 

b. for 𝑦 = 1, we have that vertex 𝑥 is adjacent to vertex 𝑦, 

c. for a zero-divisor y which is an idempotent element, we can construct a path 

𝑥 − 1 − 𝑛 − 1 − 𝑦, …(3) 

If 𝑥 is an idempotent element, then   

a. for a zero-divisor 𝑦  which is not an idempotent element, we can construct a path 

𝑥 − 𝑛 − 1 − 1 − 𝑦, …(4) 

b. for a zero-divisor 𝑦 which is an idempotent element or 𝑦 which is a unit element where 

𝑦 ≠ 𝑛 − 1, we can construct a path 
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𝑥 − 𝑛 − 1 − 𝑦, …(5) 

c. for 𝑦 = 𝑛 − 1, we have that vertex 𝑥 is adjacent to vertex 𝑦. 

By cases 1 and 2, it is proven that there is a path from vertex 𝑥 to vertex 𝑦. Hence, Υℤ𝑛
 is a 

connected graph.   ∎  
 

C. CONCLUSION AND SUGGESTIONS 
If 𝑛 is a prime number, the non-braid graph Υℤ𝑛

 is a complete graph. For all 𝑛 ≥ 3 the non-

braid graph Υℤ𝑛
 is a connected graph. 
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