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 Travelling Salesman Problem (TSP) is a problem where a person must visit some 
places, starting from one city and then moving on to the next city with the 
conditions that the places visited can only be passed precisely once and then back 
to the starting city. TSP is an NP-hard, an important problem in operations 
research. TSP problems can be solved by an exact method or an approximation 
method, namely the metaheuristic method. This research aims to solve the TSP 
problem with an approximation method called the Simulated Annealing (SA), and 
then compare the results of this approximation method with the exact Branch and 
Bound method. The results indicated that the SA method could accomplish TSP 
problems. However, like other metaheuristic methods, SA only accomplishes it 
using an approach to get good results. Still, it cannot be determined that SA has 
the most optimal results, but the time needed by the SA method is faster than the 
Branch and Bound method.  In case I, the percentage difference between the 
distance generated using the SA method with the B-and-B method is 0%, in case II 
it is 7% and in case III it is 8%.  
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A. INTRODUCTION  

Travelling Salesman Problem (TSP) is a problem where a person must visit some places, 

starting from one city to others. The places visited can only be passed precisely once and then 

go back to the starting city. TSP is often used to solve the distribution activities of a company. 

The company will undoubtedly try to keep costs to a minimum to get the maximum possible 

profit and minimize distribution activities costs. (Lalang et al., 2018) modeled a distribution 

problem of vehicle routing with time windows and occasional drivers.  Then this problem is 

expanded by the existence of multi-depots (Making et al., 2018).  Minimizing the cost of 

distribution activities can be done by finding the shortest route because distance positively 

affects distribution costs. The closer the distance traveled, the less the cost of the distribution 

activity. 

TSP problems can be solved by an exact method or approach method, namely the 

heuristic or metaheuristic method. In solving TSP with the exact method, TSP is modeled as 
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Integer Linear Programming (ILP). ILP is classified into four based on the number of decision 

variables with integer values. One of which is Mixed Integer Linear Programming (MILP), 

where not all decision variables are integer. Then the MILP problem can be solved by one of 

the exact methods.  One of the exact methods applied to accomplish MILP problems is Branch 

and Bound (B-and-B) (Jünger et al., 1995).  

There are many metaheuristics approximation technique that can be applied to 

accomplish TSP problems. Some of the methods for examples are:  Ant Colony Optimization 

(ACO) algorithm (Dorigo & Gambardella, 1997; Silalahi et al., 2019; Rokbani et al., 2021); 

Particle Swarm Optimization (PSO) (Zhong et al., 2007; Silalahi et al., 2020; Qamar et al., 

2021); genetic algorithm (Y. Y. Yu et al., 2014; Liu & Zeng, 2009); Simulated Annealing (SA) 

(Zhan et al., 2016; Botsali & Alaykiran, 2020).  Next, there are also some combination/hybrid 

methods:  fuzzy particle PSO combined with SA (Rehab, 2011); the ACO algorithm combined 

with PSO  (M. Yu, 2019); genetic algorithm combined with multiagent reinforcement learning 

(Alipour et al., 2018), water flow-like algorithm with simulated annealing (Othman et al., 

2017); the ACO algorithm combined with SA (Stodola et al., 2020). 

Simulated annealing (SA) (Zhan et al., 2016; Botsali & Alaykiran, 2020) is one of the oldest 

metaheuristic methods and is one of the first algorithms to have the ability to keep away from 

minimum local traps. SA uses the analogy of cooling and freezing metal into a crystal structure 

with minimal energy. In principle, the liquid molecules have enormous energy at big 

temperatures, so it is easier for these molecules to relocate toward other molecules. Then a 

decrease in temperature will slowly form a stable state with a minimum energy level (Zhan et 

al., 2016). 

The mechanisms in SA avoid seeking for solutions to rapidly centre around local 

minimums. During the search, SA is unique in that it accepts not only a better solution but also 

a worse solution but decreases its probability.  The likelihood of a worse solution being taken 

is set by two parameters, namely the temperature and the distinction between the current 

solution objective function values and the neighboring solutions. The purpose of taking a 

worse solution is to prevent convergence of the search to the local minimum. At larger 

temperatures, the chances of receiving a worse solution were much higher. However, as the 

temperature becomes less, the chances of accepting a worse solution decrease (Bayram & 

Şahin, 2013).  

The simulated annealing algorithm is still developing for some TSP problems, which are 

also evolving. For example: improving the SA algorithm in TSP (He et al., 2018); SA based on 

symbiotic organisms optimization algorithm for TSP (Ezugwu et al., 2017); enlarging list-

based SA algorithm to large-scale traveling salesman problem (Wang et al., 2019);  SA with a 

nest box for solving large-scale TSP problem (Yang et al., 2020). 

This research aims to accomplish the TSP optimization problem with the simulated 

annealing algorithm and then compare the results of this approximation method with the 

Branch and Bound method. We choose to use the SA algorithm because of its advantage 

avoiding the trap at a local minimum. We use the B-and-B method for the exact algorithm 

because the B-and-B method produces an exact optimum value. Then the results of the SA 

algorithm and the B-and-B method are compared in terms: total distance traveled, number of 
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iterations, and execution time. The computation results showed that the SA method could be 

used to solve TSP problems with a good approach value.  

 

B. METHODS 

1. Travelling Salesman Problem (TSP) 

The Travelling Salesman Problem (TSP) can be viewed as a problem in determining 

Hamilton's cycle on a graph, namely the cycle that passes through all vertices of the graph 

exactly once (Fournier, 2009). TSP is a situation of deciding the most effective route or 

minimizing the distance that a person will travel to visit exactly once every predetermined 

place starting from one place and going back to that starting place. The following is the 

formula for the TSP problem (Benhida & Mir, 2018). 

The function that will be optimized in TSP is: 

min Z = ∑ ∑ 𝑑𝑖𝑗 𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  , with constraints: 

a. Each place is visited exactly once, 

 ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1,                         ∀𝑗 ≠ 𝑖 

 ∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 1,                         ∀𝑖 ≠ 𝑗 

b. Eliminate any sub tour in the solution, 

 𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 − 1)(1 − 𝑥𝑖𝑗),      ∀𝑖, 𝑗 = 2, … , 𝑛 

 1 ≤ 𝑢𝑖 ≤ 𝑛 − 1,                                     ∀𝑖 = 2, … , 𝑛 

              𝑢𝑖 ≥ 0,                                                     ∀𝑖 = 2, … , 𝑛  

c. Binary constraints,  

 𝑥𝑖𝑗 ∈ {0,1}, ∀𝑖 = 1,2, … , 𝑛; ∀𝑗 = 1,2, … , 𝑛 

where, 

𝑛 = the amount of places to be visited, 

𝑑𝑖𝑗= distance of place i to place j,  

𝑢𝑖= the order of place i in the tour. 

and with the decision variables: 

 

𝑥𝑖𝑗 = {
 1, when there is a route from place 𝑖 to place 𝑗
0, else                                                                           

 

 

2. Simulated Annealing (SA) Algorithm 

The working principle of this algorithm is that at high temperatures the liquid particles 

have a high energy level so they are relatively easy to move to other particles, then when the 

temperature is lowered the particles will arrange themselves to find a stable arrangement 

with a minimum energy level (Rere et al., 2015).  The flow of the SA algorithm is shown in 

Figure 1. 

The following is the SA algorithm step-by-step flow. 

a. The initial data is given in x and y coordinate points, so it is necessary to compute the 

distance between places using the Euclidean formula:  

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 

where: 

𝑑𝑖𝑗 = the distance between place i and place j. 
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𝑥𝑖   = the x coordinate at place i. 

𝑥𝑗   = the x coordinate at place j. 

𝑦𝑖   = the y coordinate at place i. 

𝑦𝑗   = the y coordinate at place j. 

b. Determine the initial route with the random function and calculate the length of the 

initial route f(𝑥𝑜𝑙𝑑). 

c. Determine the initial control parameter 𝑇0 and the parameter α which will be used to 

derive control parameters.  

d. Run the iteration by swapping two places from the initial route randomly by 

generating two random numbers in the range (0,n) then calculating the length of the 

new route f(𝑥𝑛𝑒𝑤). 

e. Evaluating the new route. If the length of the new route is less than the length of the 

initial route, define the new route as the initial route. 

f. If the length of the new route is greater than the length of the initial route, a random 

number (r) is generated at the interval (0,1) and calculate the probability p:   

p = 𝑒−
𝑓(𝑥𝑛𝑒𝑤)−𝑓(𝑥𝑜𝑙𝑑)

𝑇  

where: 

r           = random numbers in the interval (0,1), 

f(𝑥𝑛𝑒𝑤) = length of the new tour, 

f(𝑥𝑜𝑙𝑑)  = length of the old tour, 

T          = control parameter. 

Then do the criteria test: 

1) If r < p then route is accepted, define new route as current route. 
2) If r > p then the new route is ignored. 

 

g. Cooling schedule, 

𝑇𝑘 = 𝛼 ∙ 𝑇𝑘−1   ,   0 < 𝛼 < 1,   𝑘 = 1,2, … 

 

where 𝛼 is a constant to derive the control parameter. 

h. The iteration stops when the termination criteria have been met, that is when the 

iteration maximum has been reached. 

i. Return to step 4 if the termination criteria have not been met, as shown in Figure 1. 
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Figure 1. Flowchart of Simulated Annealing Algorithm 

 

3. Data 

A solution to TSP problems carried out using the SA method and the B-and-B method. 

There are three TSP issues that will be resolved. The first problem consists of 25 places, the 

second problem consists of 40 places, and the third problem consists of 68 places. The data 

used are data obtained from random functions with coordinates 𝑥 and 𝑦 which indicate the 

location of the places in Cartesian coordinates. The data are presented in Table 1. 

 

Table 1. Data coordinate 𝑥 and 𝑦 for each case 

Case I Case II Case III 

𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 

53.49 94.14 53.49 94.14 53.49 94.14 

28.84 75.95 28.84 75.95 28.84 75.95 

44.31 28.58 44.31 28.58 44.31 28.58 

16.33 71.57 16.33 71.57 16.33 71.57 

50.71 48.65 50.71 48.65 50.71 48.65 

54.12 98.45 54.12 98.45 54.12 98.45 

24.28 75.06 24.28 75.06 24.28 75.06 

35.78 25.31 35.78 25.31 35.78 25.31 

initialize parameters and compute the 

objective function 𝑓(𝑥𝑜𝑙𝑑) 

determine the new sequence of places and compute the 
objective function 𝑓(𝑥𝑛𝑒𝑤) 

 

𝑓(𝑥𝑛𝑒𝑤) < 𝑓(𝑥𝑜𝑙𝑑) 

generates a random number 𝑟 ∈ (0,1), and calculate  

𝑝 = 𝑒−
𝑓(𝑥𝑛𝑒𝑤)<𝑓(𝑥𝑜𝑙𝑑)

𝑇  

accept the new solution 𝑟 < 𝑝 

down the temperature 

max. iteration 

Show results 

no 

yes 

 
yes 

 

no 

no 

yes 
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Case I Case II Case III 

𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 

50.05 60.28 50.05 60.28 50.05 60.28 

85.48 11.12 85.48 11.12 85.48 11.12 

9.08 58.11 9.08 58.11 9.08 58.11 

95.46 22.88 95.46 22.88 95.46 22.88 

83.47 39.44 83.47 39.44 83.47 39.44 

91.37 73.04 91.37 73.04 91.37 73.04 

60.42 98.67 60.42 98.67 60.42 98.67 

51.56 41.53 51.56 41.53 51.56 41.53 

55.73 21.64 55.73 21.64 55.73 21.64 

55.61 17.59 55.61 17.59 55.61 17.59 

29.98 49.08 29.98 49.08 29.98 49.08 

33.67 7.20 33.67 7.20 33.67 7.20 

68.61 92.34 68.61 92.34 68.61 92.34 

60.96 88.75 60.96 88.75 60.96 88.75 

66.74 43.31 66.74 43.31 66.74 43.31 

4.14 75.21 4.14 75.21 4.14 75.21 

11.23 77.58 11.23 77.58 11.23 77.58 

  
92.32 97.11 92.32 97.11 

  
45.55 67.27 45.55 67.27 

  
13.68 19.89 13.68 19.89 

  
18.47 95.28 18.47 95.28 

  
44.22 50.67 44.22 50.67 

  
66.27 70.62 66.27 70.62 

  
5.68 35.22 5.68 35.22 

  
82.61 69.82 82.61 69.82 

  
96.89 11.82 96.89 11.82 

  
88.28 53.79 88.28 53.80 

  
57.57 27.97 57.57 27.97 

  
76.75 32.95 76.75 32.95 

  
17.56 58.62 17.56 58.62 

  
97.18 90.85 97.18 90.85 

    65.43 10.42 65.43 10.42 

    15.76 38.61 

    71.08 47.37 

    3.70 51.18 

    5.97 35.71 

    28.09 41.06 

    22.67 62.66 

    10.85 50.05 

    82.87 3.65 

    82.48 32.65 

    25.32 87.28 

    65.61 57.74 

    34.64 40.66 

    90.73 58.82 
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Case I Case II Case III 

𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 

    88.62 2.33 

    30.88 22.01 

    53.21 28.01 

    59.87 89.16 

    61.34 53.82 

    35.30 73.89 

    22.13 55.43 

    75.29 90.68 

    75.64 24.78 

    97.62 2.25 

    15.82 34.29 

    19.67 86.95 

    71.81 31.78 

    27.42 65.93 

    46.51 5.91 

 

 

C. RESULT AND DISCUSSION 

1. Solution Using the Simulated Annealing (SA) Algorithm 

In this scientific work, Spyder (Python 3.7) software is used to find TSP solutions using 

the SA algorithm with the following syntax. 

 

start_time = time.time() 

def distance(x1,y1,x2,y2): 

    return math.sqrt((x1-x2)**2+(y1-y2)**2) 

xls=pandas.ExcelFile('data1.xlsx') 

sheet=pandas.read_excel(xls,'Sheet7') 

places=sheet.as_matrix() 

n=len(places) 

tur=random.sample(range(n),n); 

print("tur awal =",tur) 

def totaldistancetur(tur): 

    d=0 

    for i in range(1,len(tur)): 

        x1=places[tur[i-1]][0] 

        y1=places[tur[i-1]][1] 

        x2=places[tur[i]][0] 

        y2=places[tur[i]][1] 

        d=d+distance(x1,y1,x2,y2) 

    x1=places[tur[len(tur)-1]][0] 

    y1=places[tur[len(tur)-1]][1] 

    x2=places[tur[0]][0] 

    y2=places[tur[0]][1]  

    d=d+distance(x1,y1,x2,y2) 
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    return d 

g=0.99 

max_temp=10000 

temperature=max_temp 

max_iter=15000 

o=0 

while (o<max_iter): 

    oldDistances=totaldistancetur(tur) 

    [i,j]=sorted(random.sample(range(n),2)) 

    

newTur=tur[:i]+tur[j:j+1]+tur[i+1:j]+tur[i:i+1]+tur[j+1:] 

    newDistances=totaldistancetur(newTur) 

    m = random.random() 

    if newDistances < oldDistances or 

math.exp((oldDistances-newDistances)/temperature)>m: 

        tur=copy.copy(newTur) 

    temperature=temperature*g 

    o=o+1 

print("tur terbaik adalah",tur) 

print("distance terbaik adalah",totaldistancetur(tur)) 

plt.plot([places[tur[i%n]][0] for i in range(n+1)], 

[places[tur[i%n]][1] for i in range(n+1)],'xb-'); 

elapsed_time = time.time() - start_time 

print("waktu yang dibutuhkan adalah",elapsed_time) 

 

Case I 

In case I, several testings were done with the parameters as presented in Table 2. 

 

Table 2.  Results of case I with several different parameters and number of iterations 

Number of 
Iterations 

𝑻𝟎 a Total Distance (km) 

8000 10000 0.99 461.72 

9000 10000 0.99 422.69 

10000 10000 0.99 410.09 

15000 10000 0.9 407.82 

15000 10000 0.99 394.34 

 

After doing several experiments using different parameters and iterations, the smallest 

approach distance is 394.34 km with 15000 iterations, and it takes 14 seconds. The route with 

the smallest distance obtained is presented in Figure 2. 
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Figure 2. The optimal route of case I obtained by SA. 

 

Case II 

In case II, several experiments have been done using parameters such as Table 3. 

 

Table 3.  Results of case II with several different parameters and number of iterations 

Number of  
Iterations 

𝑻𝟎 a Total Distance (km) 

15000 10000 0.99 700.55 

30000 10000 0.99 692.99 

35000 10000 0.99 676.65 

50000 10000 0.99 659.21 

50000 10000 0.999 587.61 

 

From the experimental results using different parameters and iterations, the smallest 

approach distance is 587.61 km with 50000 iterations, and it takes 1 minute 15 seconds. The 

route with the smallest distance is presented in Figure 3. 

 

 
Figure 3. The optimal route of case II obtained by SA. 
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Case III 

In case III several experiments were carried out using the parameters as shown in Table 4. 

 

Table 4. Results of case III with several different parameters and number of iterations 

Number of Iterations 𝑻𝟎 a Total Distance (km) 

200000 10000 0.99 861.82 

1500000 10000 0.99 774.79 

2000000 10000 0.99 763.97 

3000000 10000 0.99 755.35 

3000000 10000 0.999 727.90 

 

After conducting several experiments using different parameters and iterations, the 

smallest approach distance is 727.90 km with 3000000 iterations, and it takes 1 hour 18 

minutes 42 seconds. The route with the smallest distance obtained is shown in Figure 4. 

 
Figure 4. The optimal route of case III obtained by SA. 

 

2. Solution using Branch and Bound (B-and-B) 

In this scientific paper, LINGO 17.0 software is used to find TSP solutions using B-and-B 

with the syntax as follows. 

MODEL: 

SETS: 

 CITY / 1.. 25/: U;  

 LINK(CITY, CITY): 

      DIST,   

         X;   

ENDSETS 

DATA:    

 DIST = @OLE('D:\data1.xlsx','Q') ; 

ENDDATA 

  

N = @SIZE(CITY); 

 MIN = @SUM(LINK: DIST * X); 
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 @FOR( CITY(K): 

  @SUM( CITY(I)| I #NE# K: X(I, K)) = 1; 

  @SUM( CITY(J)| J #NE# K: X(K, J)) = 1; 

  @FOR( CITY(J)| J #GT# 1 #AND# K #GT# 1: 

      U(J) - U(K) + 1 <= (N - 1) * (1 - X(J, K)) 

 ); 

 ); 

 @FOR(LINK: @BIN(X)); 

END 

 

Case I 

In case I, there are 25 places and 88580 iterations are carried out. After executing it using 

LINGO 17.0 software, the minimum distance is 394.34 km and it takes 27 seconds. The output 

obtained using the LINGO 17.0 software is presented in Figure 5. 

 

 
Figure 5. Output for case I using LINGO 

 

Case II 

In case II there are 40 places and 631296 iterations are carried out. After being executed 

using LINGO 17.0 software, the minimum distance is obtained which is 546.448 km and it 

takes 3 minutes 5 seconds. The output using the LINGO 17.0 is presented in Figure 6. 
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Figure 6. Output for case II using LINGO 

 

Case III 

In case III there are 68 places and 546168160 iterations are carried out.  After being 

executed using LINGO 17.0, the minimum distance is obtained, namely 669.449 km and it 

takes 44 hours 44 minutes 41 seconds. The output using the LINGO 17.0 is presented in 

Figure 7. 

 

 
Figure 7. Output for case II using LINGO 

 

3. Results Comparison 

Table 5 compares the total distance, the number of iterations, and the time required by 

the two methods used, the exact method, namely Branch and Bound (B-and-B), and the 

approximation method, namely SA. The B-and-B method produces the optimal distance, while 

the SA method produces the approximate distance. In case I, the percentage difference 

between the distance generated using the SA method with the B-and-B method is 0%, in case 

II it is 7% and in case III it is 8%, as shown in Table 5 
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Table 5.  Comparison of the results obtained in cases I, II, and III 

Case 
Total Distance(km) Iteration 

Time 
(hour: minute: second) 

B-and-B SA B-and-B SA B-and-B SA 

I 394.34 394.34 88580 15000 00:00:27 00:00:14 

II 546.448 587.61 631296 50000 00:03:05 00:01:15 

III 669.449 727.90 546168160 3000000 44:44:41 01:18:42 

 

Based on Table 5, it can also be seen that the number of iterations and the time required 

by the SA method is much less and faster. For case I, the number of iterations of the SA 

method is 8 times less and the time required is 2 times faster than the B-and-B method. For 

case II, the number of iterations of the SA method is 12 times less and the time required is 2 

times faster than that of the B-and-B method. For case III, the number of iterations of the SA 

method is 182 times less and the time required is 34 times faster than that of the B-and-B 

method. 

 

D. CONCLUSIONS AND SUGGESTIONS 

The results showed that the SA method could be used to solve TSP problems. But just like 

other metaheuristic methods, SA only accomplishes it using an approach so that it gets good 

results, but it cannot be determined that SA has the most optimal results, but the time needed 

by the SA method is faster than the B-and-B method. From the three cases that have been 

resolved using the SA method above, it can be seen that for case I where there are 25 places, 

the SA method has a difference of 0% from the B-and-B method, while the time needed by the 

SA method is 2 times faster than method B -and-B. For case II where there are 40 places, the 

SA method has a difference of 7% from the B-and-B method with the time needed 2 times 

faster than the B-and-B method. For case III where there are 68 places, the SA method has a 

difference of 8% from the B-and-B method but the time required is 34 times faster than the B-

and-B method. 
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