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Determining eigenvalues, determinants, and inverse for a general matrix is 
computationally hard work, especially when the size of the matrix is large enough. 
But, if the matrix has a special type of entry, then there is an opportunity to make 
it much easier by giving its explicit formulation.  In this article, we derive explicit 
formulas for determining eigenvalues, determinants, and inverses of circulant 
matrices with entries in the first row of those matrices in any formation of a 
sequence of numbers. The main method of our study is exploiting the circulant 
property of the matrix and associating it with cyclic group theory to get the 
results of the formulation. In every discussion of those concepts, we also present 
some computation remarks. 
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A. INTRODUCTION  
Discussion about circulant matrices has become more interesting research topics over last 

decades because of those can be associated with many areas of mathematical problems: 

numerical analysis, linear differential equations, operator theory, lightweight cryptography, 

and many others; hence also connected to computer science and engineering (D. Bozkurt & T.-

Y. Tam, 2015) . All of those take advantage of the nice structure of the circulant matrix so that 

the calculation of eigenvalues, eigenvectors, determinants, and inverse of the matrices can be 

formulated explicitly. This is what we are concerned about, in this paper we propose a kind of 

overview to derive the formulations based on the exploitation of cyclic group properties. 

To broaden our insight, we refer to some papers that recently have studied the above 
problem with various specializations. Without intending to exclude any other articles whose 
similar topics to this topic but missed from our consideration, we start in 2012, similar 
problems but with different kinds of circulant matrices and different types of the sequence of 
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numbers, these are with the k-Fibonacci and k-Lucas numbers. The investigation is also about 
their invertibility. Then, (D. Bozkurt & T.-Y. Tam, 2016)  establish some useful formulas for 
the determinants and inverses of circulant matrices using the nice properties of the number 
sequences, (X. Jiang & K. Hong, 2015) concerned with explicit inverse matrices of Tribonacci 
skew circulant type matrices, (Jiteng Jia & Sumei Li, 2015) found the formulation of the 
inverse and determinant of general bordered tridiagonal matrices, and (Ercan Altinisik et al., 
2015) formulated the determinants and inverses of circulant matrices with complex Fibonacci 
numbers. 

In 2016 we refer three papers: (Türkmen & Gökbaş, 2016) investigated norm of r-

circulant matrices with the Pell and Pell-Lucas numbers, (B. Radicic, 2016) concerned on k-

circulant matrices with geometric sequence, and (Nazmiye Yilmaz et al., 2016) about the g-

circulant matrix involving the generalized k-Horadam numbers. Radicic continued her works 

on k-circulant matrices with arithmetic numbers (Biljana Radicic, 2017), Lucas numbers 

(Biljana Radicic, 2018a), and biperiodic Fibonacci and Lucas numbers (Biljana Radicic, 2018b). 

Three papers in 2018: (Mustafa Bahsi & Soleyman Solak, 2018) talked about the g-circulant 

matrices, (Yun Fun & Hualu Liu, 2018) about double circulant matrices, and (Jinjiang Yao & 

Jixiu Sun, 2018) about explicit determinants and inverses of skew left circulant matrices with 

the Pell-Lucas Numbers. 

In 2019 Radicic (B. Radicic, 2019), (Biljana Radicic, 2019) still continued her works, here 

about k-circulant matrices involving the Jacobsthal and geometric numbers. We also refer to 

(Zhongyun Liu et al., 2019) about the eigen-structures of real skew circulant matrices with 

some applications, and with similar problems we can see also in (Xiaoting Chen, 2019), 

(Emrullah Kirklar & Fatih Yilmaz, 2019), and (Jiang et al., 2019). Most recently, the problems 

concerning determinants, inverses, norms, and spreads of circulant matrices and their 

variations is still in great interest among researchers, we see for example in (Yunlan Wei et al., 

2020), (A. C. F. Bueno, 2020), (Ma et al., 2021). 

Inspired by all the above beautiful references, in this current paper we derive explicit 

formulas for determining eigenvalues, determinants, and inverses of circulant matrices with 

entry in general formation of numbers sequence, instead of a specific numbers sequence or 

defined by recurrence relation as we can see in the above references. The basic methods of 

the formulations are mainly by exploiting cyclic group properties which induced from the 

definition of the circulant matrix.  

 
 
B. METHODS 

In Section C.1, firstly we review the notion of nth root of unity in the system of complex 

numbers. Then, we derive a group cyclic notion that comes from the set of all nth roots of 

unity in the system of complex numbers.  This group cyclic notion will become the basic 

theory of the subsequent sections which concern the formulations of eigenvalues, 

determinants, and inverses for circulant matrices of general type of entry.  

In Section C.2, firstly we give an overview of how to get an explicit formula of eigenvalues 

for a general circulant matrix as presented in Theorem 1 whose proof is mainly based on the 

basic theory of the cyclic group explained in Section C.1. Then, the formulation of the 

determinant is easily derived from the above eigenvalues formulation using the spectral 

theory of the circulant matrix. As a corollary of the theorem, we also explain its relationship 
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with the determinant of the left circulant matrix based on the theory of elementary row 

operations on a matrix. 

In Section C.3, we derive an explicit formula of the inverse of circulant matrices presented 

in Theorem 2. To prove this theorem, we need two lemmas which we derive by exploiting 

cyclic group properties explained in Section C.1 and the proof based on the theory of 

elementary row operations on a matrix. We also present computation remarks in some 

specific topics of the discussion in connection with fast Fourier transform algorithm. At the 

end of this paper, we give a calculation illustration of all the results and close the paper by 

concluding remark. 

 
 

C. RESULT AND DISCUSSION 
1. Review 𝒏th Roots of Unity in Complex Numbers 

We denote ℂ be the field of complex numbers. For a positive integer 𝑛, 𝑛th roots of unity 

over ℂ we mean as the solution of the equation 𝑥𝑛 − 1 = 0. A set of those roots is 𝑆 =

{𝑧 ∈ ℂ|𝑧𝑛 = 1} which is in fact a subgroup of the multiplication group ℂ∗ = ℂ\{0}. To 

formulate the elements in 𝑆 based on arithmetic of ℂ, firstly we will use the Euler’s formula 

which states that for any 𝑥 ∈ ℝ we have 𝑒𝑖𝑥  =  cos 𝑥 +  𝑖  sin 𝑥. Afterwards, we apply the 

theorem of De Moivre which states that (cos 𝑥  +  𝑖 sin 𝑥)𝑛  =  cos 𝑛𝑥  +  𝑖 sin 𝑛𝑥. Thus, by 

taking 𝑥 =
2𝜋

𝑛
, we have 

 
𝑒
2𝜋
𝑛 = (cos

2𝜋

𝑛
+ 𝑖 sin

2𝜋

𝑛
)
𝑛

= cos 2𝜋 + 𝑖 sin 2𝜋 = 1 (1) 

Since for 𝑘 =  1,2,⋯ , 𝑛 − 1, 

 
𝑠𝑘 = (cos

2𝜋

𝑛
+ 𝑖 sin

2𝜋

𝑛
)
𝑘

= cos
2𝜋𝑘

𝑛
+ 𝑖 sin

2𝜋𝑘

𝑛
≠ 1, (2) 

we may conclude that 𝑠𝑘  is a solution of 𝑥𝑛 − 1 = 0 , and hence we can rewrite 𝑆 =

{𝑠0, 𝑠1, ⋯ , 𝑠𝑛−1}, then finally we may also conclude that S is a cyclic group of order n. Therefore, 

again we can rewrite 𝑆 as 

 𝑆 = 〈𝛼〉 = {1, 𝛼, 𝛼2, ⋯ , 𝛼𝑛−1} (3) 

where 𝛼 = cos
2𝜋𝑙

𝑛
+ 𝑖 sin

2𝜋𝑙

𝑛
 for some gcd (𝑙, 𝑛)  =  1, and we call 𝛼 as a primitive (generator) 

of 𝑆. 

 
 

2. An Overview on Explicit Formula for the Eigenvalues and Determinant 

Given any sequence 𝑎0, 𝑎1, ⋯ , 𝑎𝑛−2, 𝑎𝑛−1 of complex numbers, we use the usual notation 

from the references to define the 𝑛 × 𝑛 circulant matrix as 

Circ(𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛−2, 𝑎𝑛−1) =

(

  
 

𝑎0   𝑎1  𝑎2
𝑎𝑛−1   𝑎0 𝑎1
𝑎𝑛−2  𝑎𝑛−1 𝑎0

…    𝑎𝑛−2 𝑎𝑛−1
𝑎2    ⋯ 𝑎𝑛−2
𝑎1    ⋱ ⋮

⋮       ⋮     ⋱
𝑎2       𝑎3    ⋯
 𝑎1       𝑎2    𝑎3

      ⋱ ⋱ 𝑎2               
       𝑎𝑛−1 𝑎0 𝑎1           
   … 𝑎𝑛−1 𝑎0          )

  
 

 (4) 

Below is the well-known theorem about the eigenvalues of the above circulant matrix. 

Here, we give a detail proof for the sake of subsequently discussions. 
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Theorem 1. Suppose we have 𝐴 = Circ(𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝑎𝑛−1) ∈ ℂ
𝑛×𝑛 . For every 𝑘 =

0,1,2, … , 𝑛 − 1, let 𝜆𝑘  be the eigenvalue of A corresponding to 𝑢𝑘 be an eigenvector of A, then 

 

𝜆𝑘 =∑𝑎𝑗𝛼
𝑗𝑘  𝑎𝑛𝑑 𝑢𝑘 =

(

  
 

1
𝛼𝑘

𝛼2𝑘

⋮
𝛼(𝑛−2)𝑘

𝛼(𝑛−1)𝑘)

  
 𝑛−1

𝑗=0

 (5) 

for some 𝛼 primitive of 𝑆. 

 

Proof. For all 𝑘 = 0,1,2, … , 𝑛 − 1 it is clear  𝜇 = 𝛼𝑘 ∈ 𝑆. In this proof, we will show that 

vector 𝑢 = (1, 𝜇, 𝜇2, … , 𝜇𝑛−1) ∈ ℂ𝑛 is an eigenvector of 𝐴: For this purpose, since 𝑆 is a cyclic 

group, consider that 

 

𝐴𝑢 =

(

  
 

𝑎0   𝑎1  𝑎2
𝑎𝑛−1   𝑎0 𝑎1
𝑎𝑛−2  𝑎𝑛−1 𝑎0

…    𝑎𝑛−2 𝑎𝑛−1
𝑎2    ⋯ 𝑎𝑛−2
𝑎1    ⋱ ⋮

⋮       ⋮     ⋱
𝑎2       𝑎3    ⋯
 𝑎1       𝑎2    𝑎3

      ⋱ ⋱ 𝑎2               
       𝑎𝑛−1 𝑎0 𝑎1           
   … 𝑎𝑛−1 𝑎0          )

  
 

(

 
 
 

1
𝜇

𝜇2

⋮
𝜇𝑛−2

𝜇𝑛−1)

 
 
 

=

(

  
 

𝑣0
𝑣1
𝑣2
⋮

𝑣𝑛−2
𝑣𝑛−1)

  
 
= 𝑣 

 

(6) 

if and only if  

 𝑣0 = 𝑎0 + 𝑎1𝜇 + 𝑎2𝜇
2 +⋯+ 𝑎𝑛−1𝜇

𝑛−1                                                      

𝑣1 = 𝑎𝑛−1 + 𝑎0𝜇 + 𝑎1𝜇
2 +⋯+ 𝑎𝑛−3𝜇

𝑛−2 + 𝑎𝑛−2𝜇
𝑛−1                       

= 𝑎𝑛−1𝜇
𝑛 + 𝑎0𝜇 + 𝑎1𝜇

2 +⋯+ 𝑎𝑛−3𝜇
𝑛−2 + 𝑎𝑛−2𝜇

𝑛−1                  

= (𝑎0 + 𝑎1𝜇 + ⋯+ 𝑎𝑛−3𝜇
𝑛−3 + 𝑎𝑛−2𝜇

𝑛−2 + 𝑎𝑛−1𝜇
𝑛−1)𝜇 = 𝑣0𝜇

𝑣2 = 𝑎𝑛−2 + 𝑎𝑛−1𝜇 + 𝑎0𝜇
2 + 𝑎1𝜇

3 +⋯+ 𝑎𝑛−3𝜇
𝑛−1                            

= 𝑎𝑛−2𝜇
𝑛 + 𝑎𝑛−1𝜇

𝑛+1 + 𝑎0𝜇
2 + 𝑎1𝜇

3 +⋯+ 𝑎𝑛−3𝜇
𝑛−1                 

= (𝑎0 + 𝑎1𝜇 + 𝑎2𝜇
2 +⋯+ 𝑎𝑛−1𝜇

𝑛−1)𝜇2 = 𝑣0𝜇
2                               

 (7) 

 

and so on until we have 𝑣𝑛−1 = 𝑣0𝜇
𝑛−1. Based on this fact, if we denote 𝜆 = 𝑣0, then it is clear 

that 𝐴𝑢 = 𝜆𝑢. Furthermore, since 𝜇 = 𝛼𝑘  for all 𝑘 = 1,2,… , 𝑛 − 1, then 𝜆𝑢 can be stated as 

𝜆𝑘𝑢𝑘 of which the formulation of 𝜆𝑘  and 𝑢𝑘  given in the theorem.  

 

Computation aspect of Theorem 1 is given in the following remark. 

Remark 1. (A computation note for eigenvalues) Formulation of eigenvalues in Equation 5 can 

be calculated using matrix multiplication 𝑃𝑎 = 𝜆 written as 

 

(

 
 

1                  1                1     
1                  𝛼                𝛼2     
1                   𝛼2               𝛼4     

⋯ 1
⋯ 𝛼𝑛−1

⋯ 𝛼2(𝑛−1)

⋮                  ⋮        ⋮
1                 𝛼𝑛−1          𝛼(𝑛−1)2

       ⋱ ⋮
        ⋯ 𝛼(𝑛−1)(𝑛−1))

 
 

(

  
 

𝑎0
𝑎1
𝑎2
⋮

𝑎𝑛−2
𝑎𝑛−1)

  
 
=

(

 
 
 

𝜆0
𝜆1
𝜆2
⋮

𝜆𝑛−2
𝜆𝑛−1)

 
 
 

 (8) 

 

which is in fact a kind of discrete Fourier transform, so those eigenvalues can be computed 

efficiently using fast Fourier transform algorithm. Also, we note that the column vectors of P 
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are the eigenvectors which can be computed efficiently by exploiting the recursive properties 

of the cyclic group S. We present the explicit formula for the determinant of those circulant 

matrices as the first corollary of Theorem 1. 

 

Corollary 1. Given the matrix A in Theorem 1 and suppose that the eigenvalues 𝜆𝑘  of A has been 

computed efficiently, then the determinant of A is formulated as 

 
det(𝐴) =∏ 𝜆𝑘

𝑛−1

𝑘=0
 (9) 

 

Proof. The matrix P, defined in Remark 1, is in fact a Vandermonde matrix, so it is easy to 

verify that det(𝑃) = ∏ (𝛼𝑗 − 𝛼𝑖) ≠ 0𝑖<𝑗  which means that all n column vectors of P (i.e. all 

eigenvectors of A) are linearly independent, then we conclude that A is a simple matrix, and 

hence we can write 𝐴 = 𝑃𝐷𝑃−1.  Now, we have 

 
det(𝐴) = det(𝑃𝐷𝑃−1) = det(𝑃) . det(𝐷) . det(𝑃−1) = det(𝐷) =∏ 𝜆𝑘

𝑛−1

𝑘=0
 (10) 

Remark 2. (A computation note for determinant) From Corollary 1, It is clear that the 

computation efficiency for det (𝐴) depends on the efficiency of computing the eigenvalues of A, 

see Remark 1. 

 

The second corollary of Theorem 1 is about the invertibility of A asserted as follows which 

the proof is very clear. 

Corollary 2. The matrix A in Theorem 1 is invertible if only if 𝜆𝑘 ≠ 0 for every 𝑘 = 0,1,2, … , 𝑛 −

1.. 

 

Remark 3. (A computation note for invertibility) A computation method to test the 

invertibility of A can be applied using fast Fourier transform algorithm, see Remark 1. 

Given any sequence 𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛−2, 𝑏𝑛−1 of complex numbers, we define the 𝑛 × 𝑛 left 

circulant matrix as 

 

LCirc(𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛−2, 𝑏𝑛−1) =

(

 
 
 

𝑏0   𝑏1     𝑏2
𝑏1    𝑏2     𝑏3
𝑏2   𝑏3     𝑏4

… 𝑏𝑛−2 𝑏𝑛−1
⋯ 𝑏𝑛−1 𝑏0
⋯ 𝑏0 𝑏1

⋮ ⋮ ⋮
𝑏𝑛−2 𝑏𝑛−1 𝑏0
 𝑏𝑛−1   𝑏0    𝑏1

⋱ ⋮ ⋮
⋯ 𝑏𝑛−4 𝑏𝑛−3
… 𝑏𝑛−3 𝑏𝑛−2 )

 
 
 

 (11) 

From this definition, now we arrive at the last corollary of Theorem 1 given as follows. 

Corollary 3. For integer 𝑛 ≥ 3, suppose we have 𝐵 = LCirc(𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛−2, 𝑏𝑛−1) ∈ ℂ
𝑛×𝑛 then 

 det(𝐵) = (−1)𝑚. det(𝐴)𝑤𝑖𝑡ℎ 𝑚 = ⌊𝑛 − 1 2⁄ ⌋, (12) 

where 𝐴 = Circ(𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛−2, 𝑏𝑛−1).  

 

Proof. Elementary row operations on matrix B by interchanging rows i and )𝑛 − 𝑖 + 2) of B 

for every 𝑖 = 2,3,… , ⌊𝑛 + 1 2⁄ ⌋ and 𝑛 ≥ 3 will produce matrix𝐴 = Circ(𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑛−2, 𝑏𝑛−1). 

In this process, the number of exchanges are 𝑚 = ⌊𝑛 − 1 2⁄ ⌋ which is the number of row 

permutations.  
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3. An Explicit Formula for the Inverse 

The following lemma will be used to prove the subsequent lemma. 

Lemma 1. Recall the cyclic group 𝑆 = 〈𝛼〉 = {1, 𝛼, 𝛼2, … , 𝛼𝑛−1}.  If d is a positive integer and 𝑑|𝑛, 

then we have 

 
∑𝛼𝑙𝑑 = 1 + 𝛼𝑑 + 𝛼2𝑑 +⋯+ 𝛼(𝑡−1)𝑑 = 0

𝑡−1

𝑙=0

 (13) 

where t is the positive integer such that n = td. 

 

Proof. Since S is a cyclic group and 𝑑|𝑛, it clear that 𝛼𝑑 ≠ 1, then we have 

 1 + 𝛼𝑑 + 𝛼2𝑑 +⋯+ 𝛼(𝑡−1)𝑑 = 1 + (𝛼)𝑑 + (𝛼𝑑)2 +⋯+ (𝛼𝑑)𝑡−1  

=
(𝛼𝑑)𝑡 − 1

𝛼𝑑 − 1
=
𝛼𝑛 − 1

𝛼𝑑 − 1
=
1 − 1

𝛼𝑑 − 1
= 0

 (14) 

 

To formulate the inverse of the circulant matrix A in Theorem 1, we need the following 

lemma. 

Lemma 2. For integer 𝑛 ≥ 3 and from the matrix 

 

𝑃 =

(

 
 

1                  1                1     
1                  𝛼                𝛼2     
1                   𝛼2               𝛼4     

⋯ 1
⋯ 𝛼𝑛−1

⋯ 𝛼2(𝑛−1)

⋮                  ⋮        ⋮
1                 𝛼𝑛−1          𝛼(𝑛−1)2

       ⋱ ⋮
        ⋯ 𝛼(𝑛−1)(𝑛−1))

 
 

 (15) 

defined in Remark 1, we have 

 
𝑃−1 =

1

𝑛
𝑃𝑇 (16) 

where T be the permutation matrix resulting from elementary column operations on the identity 

matrix 𝐼𝑛 by interchanging column j and (𝑛 − 𝑗 + 2) of 𝐼𝑛 for every 𝑗 = 2,3,… , ⌊𝑛 + 1 2⁄ ⌋. 

 

Proof. From the structure of P, we have the first fact that P is a symmetric matrix. The 

second fact, for every 𝑖 = 1,2,… , 𝑛, let 𝑃𝑖 be the i-th row of P, then it is easy to see that the set 

of all entries of 𝑃𝑖 is a cyclic subgroup of order some integer positive 𝑑|𝑛 of the cyclic group 

𝑆 = {1, 𝛼, 𝛼2, … , 𝛼𝑛−1}. From those facts, and by applying Lemma 1, then we have 𝑃𝑖𝑃𝑖
𝑇 =

∑ 1 = 𝑛𝑛
𝑖=1 , for every 𝑖 = 2,3,… , ⌊𝑛 + 2 2⁄ ⌋and when 𝑘 = (𝑛 − 𝑖 + 2): 

 
𝑃𝑖𝑃𝑗

𝑇 =∑(𝛼[(𝑖−1)+(𝑛−𝑖+2−1)]mod𝑛)
𝑙
=∑(𝛼0)𝑙 =∑1 = 𝑛

𝑛

𝑖=1

𝑛−1

𝑙=0

𝑛−1

𝑙=0

 (17) 

otherwise 

 
𝑃𝑖𝑃𝑗

𝑇 =∑(𝛼[(𝑖−1)+(𝑗−1)]mod𝑛)
𝑙
=∑(𝛼𝑠)𝑙 = 𝑑∑𝛼𝑙𝑑 = 𝑑(0) = 0

𝑛

𝑖=1

𝑛−1

𝑙=0

𝑛−1

𝑙=0

 (18) 

where 𝑆 = [(𝑖 − 1) + (𝑗 − 1)]mod n, 𝑑 = gcd(𝑠;  𝑛), and 𝑡 =
𝑛

𝑑
. Thus, let Q be the resulting 

matrix from elementary column operations on P by interchanging column j and (𝑛 − 𝑗 +  2) of 

P for every 𝑗 = 2,3,… , ⌊𝑛 + 1 2⁄ ⌋, then we have 
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𝑃𝑄 = 𝑑𝑖𝑎𝑔[𝑛, 𝑛,… , 𝑛] ⇔ 𝑃 (

1

𝑛
𝑄) = 𝐼𝑛⟺ 𝑃−1 =

1

𝑛
𝑄 =

1

𝑛
𝑃𝑇 (19) 

where T be the permutation matrix resulting from elementary column operations on the 

identity matrix 𝐼𝑛  by interchanging column j and (𝑛 −  𝑗 +  2)  of 𝐼𝑛  for every 𝑗 =

 2,3, … , ⌊𝑛 + 1 2⁄ ⌋.  

 

By those lemmas and all the previous discussion results, here we are at the last theorem of 

this paper. 

Theorem 2. For integer 𝑛 ≥ 3, given the matrix A in Theorem 1 and suppose that all the 

eigenvalues 𝜆𝑘  of A has been computed efficiently, then the inverse of A is formulated as 

 

𝐴−1 =
1

𝑛
Circ(𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛−1) with 

(

  
 

𝑒0
𝑒1
𝑒2
⋮

𝑒𝑛−2
𝑒𝑛−1)

  
 
= (𝑃𝑇)

(

 
 
 
 
 
 
 
 
 

1

𝜆0
1

𝜆1
1

𝜆2
⋮
1

𝜆𝑛−2
1

𝜆𝑛−1)

 
 
 
 
 
 
 
 
 

 (20) 

where P and T are the matrices that have been asserted in Lemma 2. 

 

Proof. Recall from the proof of Corollary 1, we already have that 𝐴 = 𝑃𝐷𝑃−1, so by Lemma 

2, we have 

 
𝐴−1 = (𝑃𝐷𝑃−1)−1 = 𝑃𝐷−1𝑃−1 = 𝑃𝐷−1 (

1

𝑛
𝑃𝑇) =

1

𝑛
(𝑃𝐷−1)(𝑃𝑇) (21) 

if only if 

 𝑛𝐴−1 = (𝑃𝐷−1)(𝑃𝑇) = 

(

 
 
 
 
 
 
 
 
 
 

1

𝜆0

1

𝜆1

1

𝜆3
⋯

1

𝜆𝑛−2

1

𝜆𝑛−1
1

𝜆0

𝛼

𝜆1

𝛼2

𝜆2
⋯

𝛼𝑛−2

𝜆𝑛−2

𝛼𝑛−1

𝜆𝑛−1
1

𝜆0

𝛼2

𝜆1

𝛼4

𝜆2
⋯

𝛼𝑛−4

𝜆𝑛−2

𝛼𝑛−2

𝜆𝑛−1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

𝜆0

𝛼𝑛−2

𝜆1

𝛼𝑛−4

𝜆2
⋯

𝛼4

𝜆𝑛−2

𝛼2

𝜆𝑛−1
1

𝜆0

𝛼𝑛−1

𝜆1

𝛼𝑛−2

𝜆2
⋯

𝛼2

𝜆𝑛−2

𝛼

𝜆𝑛−1)

 
 
 
 
 
 
 
 
 
 

(

  
 

1 1 1 ⋯ 1 1
1 𝛼𝑛−1 𝛼𝑛−2 ⋯ 𝛼2 𝛼
1 𝛼𝑛−2 𝛼𝑛−4 ⋯ 𝛼4 𝛼2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 𝛼2 𝛼4 ⋯ 𝛼𝑛−4 𝛼𝑛−2

1 𝛼 𝛼2 ⋯ 𝛼𝑛−2 𝛼𝑛−1)

  
 

 

 

(22) 

From this fact, let vector 𝑅1 = (𝑒0, 𝑒1, 𝑒2, … , 𝑒𝑛−1) be the first row of 𝑛𝐴−1, then 
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𝑅1 = (
1

𝜆0

1

𝜆1

1

𝜆2

1

𝜆𝑛−2

1

𝜆𝑛−1
)

(

  
 

1 1 1 ⋯ 1 1
1 𝛼𝑛−1 𝛼𝑛−2 ⋯ 𝛼2 𝛼
1 𝛼𝑛−2 𝛼𝑛−4 ⋯ 𝛼4 𝛼2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 𝛼2 𝛼4 ⋯ 𝛼𝑛−4 𝛼𝑛−2

1 𝛼 𝛼2 ⋯ 𝛼𝑛−2 𝛼𝑛−1)

  
 

 (23) 

and then  

 

(

  
 

𝑒0
𝑒1
𝑒2
⋮

𝑒𝑛−2
𝑒𝑛−1)

  
 
= (𝑃𝑇)

(

 
 
 
 
 
 
 
 
 

1

𝜆0
1

𝜆1
1

𝜆2
⋮
1

𝜆𝑛−2
1

𝜆𝑛−1)

 
 
 
 
 
 
 
 
 

 

 

(24) 

Furthermore, it is easy to verify that the second, third, ..., n-th rows of 𝑛𝐴−1 is rotating 𝑅1 

one step to the right recursively. Thus, we may conclude that 𝑛𝐴−1 is circulant, and so is 𝐴−1.  

 

Below is the computation remark of the above theorem. 

Remark 4. Rewrite a part of the formulation of 𝐴−1 in Equation 20 as 

 

𝑒 = 𝑃𝑢 where 𝑒 =

(

  
 

𝑒0
𝑒1
𝑒2
⋮

𝑒𝑛−2
𝑒𝑛−1)

  
 
, 𝑢 = 𝑇𝜆−1 and 𝜆−1

(

 
 
 
 
 
 
 
 
 

1

𝜆0
1

𝜆1
1

𝜆2
⋮
1

𝜆𝑛−2
1

𝜆𝑛−1)

 
 
 
 
 
 
 
 
 

 (25) 

Assuming that we have already computed 𝜆 by considering Remark 1, in the next step is to 

compute 𝜆−1 which is just a fast computation way in arithmetic of complex numbers, then 

followed by computing 𝒖 which is definitely very fast because of just permuting 𝜆−1 by T: 

Finally, to compute e can be done efficiently by applying fast Fourier transform algorithm, 

again see Remark 1. 

 

The inverses relationship between circulant and left circulant matrices we present as a 

corollary of Theorem 2 as follows. 

Corollary 4 Given B= LCirc(𝑏0, 𝑏1, … , 𝑏𝑛−2, 𝑏𝑛−1) ∈ ℂ
𝑛×𝑛, then 

 𝐵−1 = 𝐴−1𝑇 (26) 
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where 𝐴 = Circ(𝑏0, 𝑏1, … , 𝑏𝑛−2, 𝑏𝑛−1)  and T be the permutation matrix resulting from 

elementary row operations on the identity matrix 𝐼𝑛 by interchanging rows i and (𝑛 −  𝑖 +  2) 

for every 𝑖 = 2,3,… ⌊𝑛 + 1 2⁄ ⌋. Furthermore, if we denote 𝐴−1 =
1

𝑛
Circ(𝑒0, 𝑒1, … , 𝑒𝑛−2, 𝑒𝑛−1), then 

 
𝐵−1 =

1

𝑛
LCirc(𝑓0, 𝑓1, … , 𝑓𝑛−2, 𝑓𝑛−1) (27) 

where 

 

(

 
 
 

𝑓0
𝑓1
𝑓2
⋮

𝑓𝑛−2
𝑓𝑛−1)

 
 
 

= 𝑇

(

  
 

𝑒0
𝑒1
𝑒2
⋮

𝑒𝑛−2
𝑒𝑛−1)

  
 

 (28) 

 

Proof. Elementary row operations on matrix B by interchanging rows i and (𝑛 − 𝑖 +  2) of 

B for every 𝑖 = 2, 3,… , ⌊𝑛 + 1 2⁄ ⌋ and 𝑛 ≥ 3 will produce matrix 𝐴 = Circ(𝑏0, 𝑏1, … , 𝑏𝑛−2, 𝑏𝑛−1). 

In this process, we have 

 𝑇𝐵 = 𝐴 ⇔ 𝐵 = 𝑇−1𝐴 ⇔ 𝐵−1 = 𝐴−1𝑇 (29) 

 

 

Before we close the paper by concluding remark, below we give an illustration connected 

to all formulations that have been discussed previously. 

 

A Numerical Example: 

For given 

𝐴 =

(

 
 
 

1 2 3 4 5 6
6 1 2 3 4 5
5 6 1 2 3 4
4 5 6 1 2 3
3 4 5 6 1 2
2 3 4 5 6 1)

 
 
 

 

then  

𝛼 = cos
2𝜋

6
+ 𝑖 sin

2𝜋

6
=
1

2
𝑖√3 +

1

2
, 

𝛼2 =
1

2
𝑖√3 −

1

2
, and 𝛼3 = 𝛼2 (

1

2
𝑖√3 +

1

2
) = −1, 

 

Thus, we have 𝑃 =

(

  
 

1 1 1 1 1 1
1 𝛼 𝛼2 3 4 5
1 𝛼2 −𝛼 1 𝛼2 −𝛼
1 −1 1 −1 1 −1
1 −𝛼 𝛼2 1 −𝛼 𝛼2

1 −𝛼2 −𝛼 −1 𝛼2 𝛼 )

  
 

 and 
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𝝀 =

(

 
 
 

𝜆0
𝜆1
𝜆2
𝜆3
𝜆4
𝜆5)

 
 
 

= 𝑃

(

  
 

1
2
3
4
5
6)

  
 
=

(

 
 
 

21

−3𝑖√3 − 3

−𝑖√3 − 3
−3

𝑖√3 − 3

3𝑖√3 − 3 )

 
 
 

 

det(𝐴) = (21)(−3𝑖√3 − 3)(−𝑖√3 − 3)(−3)(𝑖√3 − 3)(3𝑖√3 − 3) 

𝐵 = 𝑇𝐴 =

(

  
 

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0)

  
 
𝐴 =

(

  
 

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3
5 6 1 2 3 4
6 1 2 3 4 5)

  
 

 

det(𝐵) = (−1)⌊
6−1
2
⌋. det(𝐴) = (1)(−27216) = −27216 

(

 
 
 
 

𝜆0
−1

𝜆1
−1

𝜆2
−1

𝜆3
−1

𝜆4
−1

𝜆5
−1)

 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 

1

21
1

−3𝑖√3 − 3
1

−𝑖√3 − 3
1

−3
1

𝑖√3 − 3
1

3𝑖√3 − 3 )

 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 

1

21

−
1

21
𝑖√3 −

1

12

−
1

21
𝑖√3 −

1

4
1

−3
1

21
𝑖√3 −

1

4
1

21
𝑖√3 −

1

12 )

 
 
 
 
 
 
 
 
 
 

 

𝐸 = 𝑃𝑈 = 𝑃

(

 
 
 
 
 
 
 
 
 
 

1

21

−
1

21
𝑖√3 −

1

12

−
1

21
𝑖√3 −

1

4
1

−3
1

21
𝑖√3 −

1

4
1

21
𝑖√3 −

1

12 )

 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
−
20

21
22

21
1

21
1

21
1

21
1

21 )

 
 
 
 
 
 
 
 
 
 

 

𝐴−1 =
1

6
Circ (−

20

21

22

21

1

21

1

21

1

21

1

21
) 



  Nur Aliatiningtyas, On the Explicit Formula for ...    721 

 

 

𝐹 = 𝑇𝐸 =

(

  
 

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0)

  
 

(

 
 
 
 
 
 
 
 
 
 
−
20

21
22

21
1

21
1

21
1

21
1

21 )

 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
−
20

21
1

21
1

21
1

21
1

21
22

21 )

 
 
 
 
 
 
 
 
 
 

 

𝐵−1 =
1

6
LCirc(−

20

21

1

21

1

21

1

21

1

21

22

21
) 

 

To determine the eigenvalues, determinants, and inverses for general matrices can be 

done using simply methods which can be found in any standard books of linear algebra. But, 

that is a computationally hard work, especially when the size of the matrix is large enough. It 

is because the determinant calculation based on recursive method, and the calculation of 

inverse and eigenvalues depends on its determinant. When the matrix has a special structure, 

such as circulant, and more specific also having special type of entry, such as Fibonacci 

sequence, then the calculation can be made much easier by giving their explicit formulations. 

For the case of circulant matrices with general type of entry, one of the explicit 

formulations we have derived and discussed in the above theorems, their proofs, and their 

corollaries in this article as the results of our research. If we compare these results to the 

previous results in the references is that the previous results using more specific type of entry 

of the matrix and more focus on the problems of mostly determining the determinant and the 

inverse. It means that our results more general which the explicit formulation can be applied 

to circulant matrices with any type of sequence of numbers, and of course more complex 

calculation. 

 

D. CONCLUSIONS AND SUGGESTIONS 

A direct method to get the eigenvalues, determinants, and, inverses for general matrices 

can be done using simply methods which can be found in any standard books of linear algebra. 

However, for the circulant matrices, one can make it faster by applying numerical methods 

such as using fast Fourier transform algorithm. Now in this paper, we present a different 

approach to get that explicit formulation of the inverse is just by matrix multiplication. Then, 

the computation of this matrix multiplication can also be accelerated by applying fast Fourier 

transform algorithm. The most important method of that formulation is based exploitation of 

cyclic group properties which could be explored further to other cases such as for either skew 

circulant matrix or circulant matrices over finite fields. Thus, the results of this paper still 

need to be continued, there are at least three subjects that would become our ongoing and 

nearly future works. (1) To find a subgroup cyclic of the group ℂ∗ that can be used to derive 

explicit formulas for eigenvalue, determinant, and inverse for general skew circulant matrices, 

(2) Exploring the methods of this paper for the case of circulant and skew circulant matrices 
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over finite fields, (3) Studying and exploring fast Fourier transform algorithm especially for 

the case of circulant and skew circulant matrices over finite fields. 
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