DEVELOPMENT OF PICTORIAL-BASED FIVE-TIER MULTIPLE CHOICE DIAGNOSTIC TEST TO IDENTIFY MISCONCEPTIONS OF ELECTROCHEMICAL CELL MATERIAL

Nur Afni Himmatul Ulya¹, Setia Rahmawan¹

¹Cemistry Education, Sunan Kalijaga State Islamic University Yogyakarta, Indonesia afniasyakir2@gmail.com¹, setia.rahmawan@uin-suka.ac.id¹

INFO ARTIKEL	ABSTRAK

Riwayat Artikel:

Diterima: 20-12-2024 Disetujui: 01-04-2025

Kata Kunci:

Five-tier Multiple Choice; Miskonsepsi; Pictorial; Sel Elektrokimia; Tes Diagnostik Abstrak: Miskonsepsi dalam pembelajaran kimia, khususnya pada sel elektrokimia seperti sel volta dan elektrolisis, sering terjadi karena kompleksitas konsep redoks, perpindahan elektron, serta proses di anoda dan katoda. Penelitian ini bertujuan mengembangkan instrumen tes diagnostik five-tier multiple choice berbasis pictorial untuk mengidentifikasi miskonsepsi pada materi ini. Metode yang digunakan adalah Research and Development (R&D) model Tessmer, yang terdiri dari lima tahap: preliminary, self-evaluation, expert review, one-to-one evaluation, dan small group evaluation. Validitas diuji menggunakan Content Validity Ratio (CVR) dan Content Validity Index (CVI), sementara reliabilitas diuji dengan model Rasch. Hasil penelitian menunjukkan bahwa instrumen ini valid (CVI rata-rata 1,00) dan memiliki reliabilitas sedang (Cronbach's Alpha 0,71-0,76). Instrumen ini berhasil mengidentifikasi miskonsepsi terkait prinsip keria sel volta, elektrolisis, dan arah aliran elektron. Mayoritas peserta didik mengandalkan internet sebagai sumber utama informasi. tetapi kurangnya verifikasi memperbesar potensi miskonsepsi. Instrumen ini diharapkan membantu guru dalam menyusun strategi pembelajaran berbasis data untuk meningkatkan pemahaman peserta didik.

Abstract: Misconceptions in chemistry learning, particularly in electrochemical cells such as voltaic cells and electrolysis, often arise due to the complexity of redox concepts, electron transfer, and processes occurring at the anode and cathode. This study aims to develop a pictorial-based, five-tier multiple-choice diagnostic test to identify misconceptions in this subject. The method used follows the Research and Development (R&D) approach based on the Tessmer model, which consists of five stages: preliminary analysis, self-evaluation, expert review, one-to-one evaluation, and small group evaluation. Validity was assessed using the Content Validity Ratio (CVR) and Content Validity Index (CVI), while reliability was tested using the Rasch model. The results indicate that the instrument is valid (average CVI = 1.00) and has moderate reliability (Cronbach's Alpha = 0.71–0.76). It successfully identifies misconceptions related to the working principles of voltaic cells, electrolysis, and the direction of electron flow. The majority of students rely on the internet as their primary source of information; however, the lack of verification increases the risk of misconceptions. This instrument is expected to help teachers design data driven learning strategies to enhance students' understanding.

A. INTRODUCTION

Chemistry is an important subject that develops students' critical thinking skills and creativity (Abd.Rachman et al., 2017). However, chemistry is often considered a difficult and under-desirable subject due to its complex challenges (Muderawan et al., 2019). Previous research has shown that many students have difficulty understanding abstract chemistry concepts and require a deep understanding (Permana et al., 2019). A studi by Kristiana et al. (2020) it also revealed that students' understanding of electrochemical cell materials is still low, which indicates the need for an effort to improve student learning outcomes.

In previous research conducted by Rahayu et al. (2011) It found that many students had misconceptions in the concepts of electrolysis,

electric flow, voltage cells, and electrode reactions. Only about 44% of Indonesian students understand the concepts in this material, while 84% still have difficulties with the redox reaction material. This difficulty is due to the need to understand three levels of chemical representation: macroscopic, symbolic, and submicroscopic (Ahmad & Lah, 2013). Imbalances in the understanding of these three representations often lead to misconceptions (Sari, 2021). Misconceptions in students can be an obstacle in the learning process and affect their ability to understand a concept thoroughly (Hermita et al., 2017). Misconceptions in chemistry learning have a profound impact and become an obstacle to understanding the following materials because of the close connection between various chemical concepts (Savira et al., 2019). Therefore, effective diagnostic tools are needed to identify and analyze the misconceptions experienced by students in order to improve their understanding of chemical concepts.

Diagnostic tests are designed to thoroughly identify individual students' difficulties in a single test session, with the aim of detecting specific weaknesses in their understanding (Putri & Rinaningsih, 2021). A variety of diagnostic test instruments have been developed to assess student comprehension, including interviews, open-ended questionnaires, concept maps, images, word associations, as well as multiple-choice tests (Kaltakci-gruel et al., 2017). Among these methods, multiple-choice diagnostic tests are considered more practical, but they have limitations in distinguishing correct answers based on actual understanding from answers that are chosen for the wrong reasons (Budiharti et al., 2018).

Effectively addressing misconceptions requires proper identification of the cause (Rosita et al., 2020). Previous research has shown that one-tier and two-tier diagnostic tests are still not effective enough in identifying misconceptions because they only assess students' final answers without considering the reasons behind those answers (Annisa et al., 2019). Meanwhile, the four-tier diagnostic test, as researched by Roghdah et al. (2021). and Nurlita (2022), proven to be able to better identify students' levels of understanding and misconceptions. However, the research of Wahyuni et al. (2022) highlighting that the four-level test is still not able to uncover the root cause of students' misconceptions thoroughly. In an effort to overcome these limitations, Simamora et al. (2023) Introducing a five-tier diagnostic test that adds open-ended questions at the fifth level to capture more deeply the student's conceptual reasoning. This approach makes diagnostic tests more effective in evaluating students' conceptual understanding and opens up opportunities for better learning intervention strategies. In addition, diagnostic tests in general are often presented in narrative form, which can cause boredom in students when working on the questions (Santi & Rahayu, 2022). As a solution to overcome these weaknesses, the use of image-based questions or pictorial-based diagnostic tests can be a more interesting and effective alternative solution in identifying student misconceptions.

Pictorial tests are assessment tools that utilize images or visual representations with specific meanings to illustrate a particular concept, object, or phenomenon (Virgiawan et al., 2020). Various forms of pictorial representation, such as pictures, tables, diagrams, graphs, and mind maps, can enhance students' understanding by providing concrete visualizations of abstract concepts (Tavassoli et al., 2013). Additionally, these images can depict submicroscopic aspects of chemistry and aid in identifying misconceptions that students may experience (Hanson, 2015). Despite these advantages, previous research has primarily focused on using pictorial representations in general learning contexts rather than incorporating them into structured diagnostic assessments. Moreover, conventional diagnostic instruments still rely heavily on textual explanations, which can be challenging for students with reading comprehension difficulties (Nuraisyah et al., 2022). Therefore, integrating pictorial tests into diagnostic assessments offers a more effective approach to identifying misconceptions while simultaneously improving students' understanding of chemistry concepts and enhancing their interest and motivation in the subject.

The urgency of this research lies in the increasing need for effective diagnostic tools to identify students' difficulties in understanding complex chemical concepts. With the increasing challenges in chemistry learning, this study aims to develop and implement a five-level image-based multiple-choice diagnostic test to improve student

understanding. To date, no research has been found that develops an image-based five-level diagnostic instrument for electrochemical cell materials. Therefore, this study introduces an innovative diagnostic tool that not only identifies misconceptions but also engages students through visual representations. The aim of this study was to develop and test the effectiveness of an image-based five-level multiple-choice diagnostic test in identifying students' difficulties in understanding chemical concepts. Thus, this research is expected to make a real contribution to improving the quality of chemistry learning and its relevance in the development of science education.

B. RESEARCH METHODS

Development Model

This research the Research uses and Development (R&D) method to produce and evaluate products systematically (Sugiyono, 2013). This study uses an R&D method with the Tessmer model, which includes a preliminary stage, a formal evaluation, and product testing based on recommendations of Martin Tessmer (1993), which includes self-evaluation, prototyping (expert review, one-on-one, small group) with low resistance revisions, as well as field tests with high resistance revisions (Akker et al., 1999).

Development Procedure

This study requires a procedure to achieve the test package's final prototype as intended. This research consists of four main stages: preliminary, self-evaluation, prototyping, and field test:

1. Fase preliminary

In the preliminary stage, the researcher conducted several analyses, namely, student analysis, material analysis, and curriculum analysis. In the preliminary study, the researcher produced a pictorial-based five-tier diagnostic test design on electrochemical cell material to be used as an initial prototype draft.

- 2. Self-Evaluation Researchers review and refine Prototype I based on language, question structure, and content suitability.
- 3. Fase prototyping involves three evaluation stages:

1. Expert Review: Five validators assess language, construction, and content.

2. One-to-One: Testing with three students of different abilities for feedback.

3. Small Group: Testing with six students (two high, two moderate, two low ability) to refine Prototype III.

- 4. Field Test Prototype III is tested with 12thgrade science students, incorporating feedback for final improvements.
 - 1. Trial Questions

The expert test was conducted by two chemistry lecturers and three chemistry teachers, while a field practitioner test was carried out by a chemistry teacher to identify minor errors. The empirical test involved 60 12th-grade science students through limited and field trials. Data collection included qualitative (interviews, validator comments, and responses) and quantitative aspects (validity, reliability, difficulty level, incorrect answer patterns, and question effectiveness).

2. Question Item Analysis Techniques

Validity uses the Content Validity Ratio (CVR) to assess the suitability of question items to domains measured based on expert assessment (Lawshe, 1975). Scoring item answers uses the CVR method, which processes the score. The CVR formula is:

$$CVR = \frac{Ne - \frac{N}{2}}{\frac{N}{2}}$$

Information:

CVR = Content validity ratio

Ne = Number of validators who gave a "valid" rating

N = Number of validators

Then, an evaluation of the suitability of the format and language of the question items was carried out using the CVI formula, which provided a further overview of the extent to which the question items were considered valid in the context of conformity with the criteria set. The following is the CVI formula:

$$CVI = \frac{total Number of CVR}{number of questions}$$

After obtaining valid question items, a reliability test was carried out using the Rasch model. The processing of reliability values is carried out using Ministep software version 5.8.3.8 to determine reliability criteria. According to (Sugiyono, 2022), to obtain a distribution of measurement values close to normal, the Number of respondents for the test of questions with validity and reliability tests is at least 30. In this study, the test was carried out using two classes with different questions but still referring to the same indicators. Although the questions are different, the preparation and testing have met the main requirements of quantitative research calculations.

C. RESULTS AND DISCUSSION

1. Tes Validity

The diagnostic test instruments were analyzed using CVR and CVI based on validating five validators, covering aspects of the material, construction, language, and instructions for working on the questions. The results of the analysis of the validity of the diagnostic test instrument are as follows:

Table 1. Results of CVR and CVI

Question	V 1	V 2	V 3	V 4	V 5	CVR	CVI
Items						Value	Value
1-30	1	1	1	1	1	1,00	1,00

Based on Table 1, the question items that have been assessed by the validator have shown that all question items have a CVR and CVI value of 1.00, which is in the very appropriate category. This indicates the instrument is valid and can be used for further trials. Some questions are revised to improve quality, such as correcting redactions, adding information, or presenting data to be more effective in measuring students' abilities.

Question Number	Suggestion
3	It is necessary to add a description of the
	anode and cathode used
4,5,6	The taxonomy of bloom does not match.
	In package A, it is necessary to add a
	description of the compound phase to the
	answer. In the typo answer key, the tier 1
	and tier 2 C packages should be tier 1 and
	tier 3
13,14,15	Packages A, B, and C can be created for
	this purpose. The indicator of the
	question is changed to predict the cell
	diagram instead of compiling the cell
	diagram. The descriptive cell notation in
	the problem and image is inconsistent
	(the lowest Ag electrode in the Ast Ion
	solution and the Ni electrode are
	submerged in the Ni ²⁺ Ion solution, but
	the solution is drawn as "the same."
18	It is better to provide in the form of story
	literacy to encourage students to use their
	imagination so that they can increase
	their reasoning skills

20	It is known that cathodes and anodes are presented in the question. In the tier 3 option, it does not make sense if the cell E^{0} data has been given; the solution can
	be given a reason for why or the meaning
	of cell E° and how the cell E° occurs.
22	Note: The reason can be shortened. A
	lower (negative) E ^o can protect can be
	added so that it is more HOTS than just
	comparing the E ^o of the cell.

The following table shows the revision process carried out on one of the question items.

Table 2. Valid Question Items for Revision Before

	Revision	
Tier	Questions and answer options	-
Tier 1	Take a look at the picture below!	
	Protection Against Corrosion	

Figure 3. Cathodic Protection Source: tjdecho.com

An engineer named Ahmad plans to protect the iron structure from corrosion. He has standard electrode potential data for some metals that can be used in the cathodic protection process. In his planning, Ahmad had to choose a metal that could act as a cathode to protect the iron from rusting. Ahmad considers the standard electrode potential of the various metals available:

	Mg ²⁺	$(aq) + 2e^{-} \rightarrow Mg(s)$ $E^{o} = -2,37 \text{ volt}$
	Pb ²⁺	$(aq) + 2e \rightarrow Pb (s)$ $E^{\underline{o}} = -0.13 \text{ volt}$
	Ni ²⁺	$(aq) + 2e^- \rightarrow Ni (s)$ $E^{\underline{o}} = -0.25 \text{ volt}$
	Fe ²⁺	$(aq) + 2e^- \rightarrow Fe(s)$ $E^{o} = -0.44 \text{ volt}$
	Cu ²⁺	$(aq) + 2e \rightarrow Cu (s) \qquad E^{\underline{o}} = +0.34 \text{ volt}$
	Ag+	$(aq) + e^{-} \rightarrow Ag(s)$ $E^{\underline{o}} = +0.80 \text{ volt}$
	Metals	s that protect the iron from corrosion
	using	the cathodic protection method are
	A.	Ag
	B.	Cu
	С.	Ni
	D.	Mg
	E.	Pb
Tier 2	Are yo	ou sure of your answer?
	A.	Sure
	B.	Not sure
Tier 3	What	is your reason for choosing the
	answe	er?
	A.	Nickel (Ni) can protect iron from
		corrosion through cathodic
		protection methods because its

protection methods because its reduction potential is higher than

		iron's.
	B.	Magnesium (Mg) can protect iron
		from corrosion using the cathodic
		protection method because its
		reduction potential is lower than
		iron's.
	C.	Copper (Cu) can protect iron from
		corrosion by cathodic protection
		methods because its reduction
		potential is higher than iron's.
	D.	Silver (Ag) can protect iron from
		corrosion through cathodic
		protection because its reduction
		potential is lower than iron's.
	E.	Lead (Pb) can protect iron from
		corrosion using the cathodic
		protection method because its
		reduction potential is higher than
		iron's.
Tier 4	Are yo	ou sure of your answer?
	А.	Sure
	В.	Not sure
Tier 5	Where	e did you get the information from?
	А.	Package book
	В.	Internet
	C.	Teacher
	D.	Friends
	Е.	Parents
Table 3.	. Valid	Question Items for Revision After
		Revision
Tier	Quest	ions and answer options
Tier 1	Take a	a look at the picture below!
		Protection Against Corrosion

Figure 4. Cathodic Protection Source: tjdecho.com

An engineer named Ahmad is planning to protect the iron structure from corrosion. He has standard electrode potential data for some metals that can be used in the cathodic protection process. In his planning, Ahmad had to choose a metal that could act as a cathode to protect the iron from rusting. Ahmad considers the standard electrode potential of the various metals available:

$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	Eº = -2,37 volt
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	Eº = -0,13 volt
Ni ²⁺ (aq) + 2e ⁻ → Ni (s)	Eº = -0,25 volt
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	Eº = -0,44 volt

	Cu ²⁺	$(aq) + 2e^- \rightarrow Cu (s)$ $E^0 = +0.34 \text{ volt}$
	Ag+ Motale	$(aq) + e^{-} \rightarrow Ag(s)$ $E^{e} = +0.80$ volt
	using	the cathodic protection method are
	۵	
	л. P	ng Cu
	D. C	N;
	ե. Ծ	INI Ma
	D. Е	Mg
	E.	
lier Z	Are yc	Sure of your answer?
	A. D	Sure
	В.	Not sure
lier 3	wnat	is your reason for choosing the
	answe	er?
	А.	Nickel (Ni) can protect iron from
		corrosion because its reduction
		potential (-0.25 V) is more favorable
		than iron (-0.44 V), so nickel is more
		easily oxidized and can act as an
		effective sacrificial anode.
	B.	Magnesium (Mg) can protect iron
		from corrosion because its reduction
		potential (-2.37 V) is much more
		damaging than iron (-0.44 V), so
		magnesium is more easily oxidized
		and can act as an effective sacrificial
		anode.
	C.	Copper (Cu) can protect iron from
		corrosion because its reduction
		potential (+0.34 V) is more favorable
		than iron (-0.44 V), so copper is
		more easily oxidized and can act as
		an effective sacrificial anode.
	D.	Silver (Ag) can protect iron from
		corrosion because its reduction
		potential (+0.80 V) is much more
		positive than iron (-0.44 V), so silver
		oxidizes more easily and can act as
		an effective sacrificial anode.

E. Lead (Pb) can protect iron from corrosion because its reduction potential (-0.13 V) is more favorable than iron (-0.44 V), so lead is more easily oxidized and can act as an effective sacrificial anode.

Tier 4	Are yo	ou sure of your answer?
	А.	Sure
	В.	Not sure
Tier 5	Where	e do you get the information from?
	А.	Package book
	В.	Internet
	C.	Teacher
	D.	Friends
	E.	Parents

Tables 2 and 3 show the revision of questions related to cathodic protection, clarifying redactions, answer choices, and adding supporting data. One-toone evaluations were carried out on three students with different abilities. The results of the interview revealed that several answer options in the reason tier (tier 3) felt similar, causing confusion. Some problems are also considered too difficult, especially those that involve complex calculations. The revised results of this evaluation are called prototype 3, which is then retested through a small group evaluation. Small group evaluations were carried out on six students with various levels of ability. The revision includes the addition of test filling instructions for each tier. The results of this evaluation are called prototype 4, which will then be tested in a field test.

2. Test Reliability

The reliability test was carried out based on the test results of questions involving 30 students in class XII B and 30 students in XII C at MAN. Data analysis using Ministep software version 5.8.3.8 produces a variety of reliability indicators that are important for evaluating the quality of test instruments. The results of the analysis are shown in the following figure.

	TUTAL			HODEL	15	FIT	OUT	F17
	SCORE	COUNT	MEASURE	\$.E.	MISQ	257D	MUSQ	251
HEAN.	2.4	25.8	67	.49	.99	09	1.05	.0
SER	8	-8	.17	.82	.84	.23	.87	.2
P.50	4.1	.8	.92	08	.22	1.23	. 39	1.3
5.50	4.1	.8				1.25	.39	1.2
MAX.	17.0	25.0		.76	1,42	2.32	2.25	2.6
MIN.	2.0	25.8	-2.75	-43	.70	-2.26	.61	-2.1
TEAL R	57 .52	TRUE SD	.77 58	PARATION	1.68 Per	son API	TABTLET	¥ .8
ODEL R	45E	TRUE SD	. 28 . 55	PARATION	1.58 Per	son REL	TABLUTT	¥ .7
S.E. O	F Person H AV SCORE TI ALPHA (KR IZED (58 I	(4M + .17)-MEASURE (20) Person TEM) RELIAN	CORRELATION NAME SCOR BILITY	H99 E -11511 B3	RELIMITIT	Y7)	STM -	2.17
S.E. 0 rson R DHIMCH ANDARD	F Person H W SCORE TI ALPHA (NO IZED (54 I TOTAL	(494 + ,17) MEASURE (20) Person (EM) RELIA	CORRELATIO NAME SCOR BILITY	H = .99 H = 1151 H3 HCDEL	RELIMPTIET	¥ = .7)	STM -	3.17
S.E. 0 rson R OHDACH ANDARD	F Person H AV SCORE T ALPHA (KM IZED (50 T TOTAL SCORE	(20) + ,17 - MEASURE (20) Person (EM) RELIA COUNT	MEASURE	H = .99 H = TEST B3 HODEL S.E.	NEL LANEL ET	Y71 FIT ZSTD	SITM - OUTI MHSQ	3.11 11 2511
S.E. O rson R CHEACH ANDARD REAN	F Person PE AW SCORE T ALPHA (NOR IZED (50 T TOTAL SCORE 11.3	(48) + .17) MEASURE (20) Person (EM) RELIAN COUNT 38.0	MEASURE . 80	H = .99 E TIST H3 MODEL S.E. .44	NEL LADEL ET	Y71	OUT MHSQ 1.05	11.11 2511 2511
S.E. O rsoo R DHDACH AMDARD REAN SEM	F Person M AW SCORE TI ALPHA (KM IZED (50 I TOTAL SCOME 11.3 1.0	(48) + .17) MEASURE (20) Dense (EN) RELIA COUNT 30.0 .8	CORRELATIO RAM SCOR BILITY MEASURE .00 .19	H = .99 F TEST H3 MODEL 5.E. .44 .81	нт. 1401.11 In MHSQ .99 .03	FIT ZSTD 06 .18	007 MKSQ 1.05 .06	3.17 2511 .14 .21
S.E. 0 rson & OHDACH ANDARD REAH SEM 2.SD	F Person M ALPHA (IM IZED (SU I TOTAL SCOTE 11.3 1.0 4.9	EAN + .17 - MEASURE (20) Person (En) RELIA COUNT 30.0 .0 .0	CORRELATIO NAME SCOR BILITY MEASURE .00 .19 .07	H = .99 F TEST H3 MODEL 5.E. .44 .81 .85	нц заять т т мизо .99 .83 .15	FIT ZSTD 06 .18 .09	0011 MRSQ 1.05 .06 .12	3.17 2570 .14 .21 1.01
S.E. 0 rson R onnach Andard KEAN SEM r.SD i.SD	F Person M ALPHA (EM IZED (SU I TOTAL SCOME 11.3 1.0 4.9 5.0	1484 + .17 1. MEASURE (20) Person (EM) RELIAU COUNT 38.0 .0 .0 .0	MEASURE .80 MEASURE .80 .18 .87 .89	H = .99 H = 11517 H3 MODEL 5.E. .44 .81 .85 .85	IRI 1995 -99 -03 -16	¥ = .71 FIT 757D 06 .18 .09 .91	0011 MHSQ 1.05 .06 .12 .32	2.17 2570 .14 .21 1.01 1.03
S.E. 0 rson R CHEAH ANDARD REAH SER SER S.SD S.SD SAX,	F Person M Av SCORE T ALEMA (MA IZED (50 I TOTAL SCORE 11.3 1.0 4.9 5.8 22.0	1484 + .17 1. MEASURE (202) Derman 202) Derman 100, 0 100, 0 10	CORRELATIO MAGE SCOR BILITY = . MEASURE .00 .19 .87 .89 1.82	H = .99 F TIST H3 MODEL S.E. .44 .81 .85 .62	IN: 1401111 IN: PMSQ .99 .03 .15 .16 1.23	V = .71 FIT 757D 06 .18 .09 .91 1.46	0071 MISQ 1.05 .06 .12 .32 1.69	1.17 2570 .14 .21 1.01 1.03 2.38
S.E. O PISON R DREACH ANDARD REAN SEM P.SD L.SD GAX. (SN,	F Person M W SCORE T ALPHA (17 IZED (50 I TOTAL SCORE 11.3 1.0 4.9 5.8 22.0 3.0	EAN + , 17) MEASURE (20) Person (En) RELIA COUNT 30.0 .0 30.0 30.0 30.0 30.0 30.0	CORRELATIO A MAN SCOR BILITY MEASURE .00 .18 .87 .29 1.82 .1.85	H + .99 F THET B3 MODEL 5.E. .44 .81 .85 .62 .40	199 99 99 15 16 1.23 .66	Y = .71 FIF ZSTD 06 .18 .09 .91 1.46 -2.32	0071 MISQ 1.05 .06 .12 .32 1.69 .54	-14 -14 -21 1.01 1.03 2.38 -1.79
S.E. O PISON R CHIMACH AMDARD KEAN SEM 7.5D GAX. (DN, KEAL MM	F Person M W SCORE T ALPHA (17 IZED (50 I TOTAL 5CORE 11.3 1.0 4.9 5.8 22.0 3.0 3.0 555 .45	EAN + , 17) MEASURE (20) Person (En) RELIA COUNT 30.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	000RELATIO MAN SCOR SULITY MEASURE .00 .19 .07 .09 1.82 1.82 .1.85 .74 560	H + .99 F TIST B3 MODEL 5.E. .44 .81 .65 .62 .40 PARATION	180 180 199 .83 .15 1.65 1.65 1.65 1.65	V7) 06 .18 .09 .91 1.46 -2.32 . 8EL	0071 MISQ 1.05 .06 .12 .32 1.69 .54	2.17 2511 .14 1.01 2.38 (1.75

Figure 1. Summary Statistics Person

Based on Ministep's analysis, in class XII B the reliability of the participants was 0.69 and the reliability of the question items was 0.73, both of which were classified as moderate. Cronbach's Alpha score of 0.71 indicates sufficient internal consistency of the question, but not optimal. Person Separation of 1.48 is still inadequate in distinguishing students' abilities, while Item Separation of 1.65 is quite good in distinguishing the difficulty level of questions.

	TOTAL			1300H		NFIT	007	FIT .
	SCORE	COUNT	MEASUME	5.8.	19150	2510	PRISQ	251
REAN	17.7	25.8	.81	.46	.99	.08	1.02	.8
SEM	.9	.0	.17	.01	.01	.16	05	-1
×.SD	4.6	.0	.91		.15	.85		
5.50	4.7	.0	.93	.84	.15	.87	.33	.9
MAX.	20.0	25.8	1.55	-57	3.55	1.88	2.12	2.7
SIN,	4.0	25.8	-1.85	.43	.77	+1_45	.60	-1.1
	+++++++++++++++++++++++++++++++++++++++							
IEAL 10	06 .47	TRUE SD	.78 SEPS	NOTIAN	1.06 Per	caon REL	TOBULL	5.00
WEL RM	be .46	TRUE SP	.79 SEP	NULTARA	1.71 Pa	raon BEL	TABILIT	1
E. 0F	Person ME	AN = 17						
5.E. 0F	Person ME	All = .17						
5.E. OF	Person ME	AM = .17	ORRELATION	- 1.00				111
Near H	Person ME	All = .17 MEASURE (20) Parson	ORRELATION	= 1.00	REITZATIT	TY = .76	5178 -	2.20
NON BACK	Person ME M SCORE-TO ALPHA (KR 2ED (50 IT	AN17 -MEASURE (20) Person TEM) BELIAI	ORRELATION	- 1.00 *TEST*	REIJABILT	TY76	sen -	2.24
NBACH	Person ME al SCORE-TO ALPHA (KR ZED (50 TT	AN17 -MEASURE (20) Person TM) RELIAN	CORRELATION RAW SCORE NULITY + .R	= 1.00 *TEST*	RELIABILT	TY76	513M -	2.24
NEACH MEACH MEACH	Person ME al SCORE-TO ALPHA (KR ZED (50 T) TOTAL	AM = .17 MEASURE (20) Parson EM) RELIAN	ORRELATION RAW SCORE NULITY = .R	+ 1.00 TESTY MODEL	RELIANTIT	IY7	SEM -	2.2
van R/ MBACH MEACH	Person ME al SCORE-TO ALPHA (KR ZED (50 TT TOTAL SCORE	AM = .37 - PEASURE (20) Purson TP() RELTAT COUNT	ORRELATION RAW SCORE DLITYR MEASURE	- 1.00 TTEST 5 MODEL 5.E.	NELIANILI II Musq	I Y7 IFET ZSTD	SER - QUTI MUSQ	2.20 FIT 25T
NEACH	Person ME ALPHA (KR ZED (50 T TOTAL SCORE 15.2	AM = .17 MEASURE (20) Pursor TM) RELIAN COUNT 30.0	ORRELATION I RAW SCORE DLITYR MEASLIRE .80	= 1.00 TTEST 5 MODEL 5.E.	NELIMOIIT II MUSQ 1.00	IFET 2510 84	5671 - 0011 Milisq 1.02	2.2 FIT 25T
NEACH MEACH MEACH MEAN SEM	Person Mi ALPHA (KR ZED (Se II TOTAL SCORE 15.2 .9	AM17 20) Person 20) Person 10) NELTAL COUNT 30.0 .0	ORRELATION RAW SCORE ULITYR MEASURE .88 .16	- 1.00 TTEST 9 MODEL 5.E. .42 .01	RELIABILI 11 MUSQ 1.80 .84	IFET 2510 84 .23	0011 MISQ 1.02 .06	2.24 FIT 25T 0 .2
MEAN SEH PLSD	Person Mi ALPHA (KR ZED (S0 IT TOTAL SCOTE 15.2 .9 4.6	AW17 - MEASURE (20) Person TM) RELTAL COUNT 30.0 .0 .0	ORRELATION RAW SCORE MULITY = .R MEASURE .08 .16 .08	- 1.00 "TEST" 5 "ODEL 5.E. .42 .01 .03	RELIABILT 11 MUSQ 1.00 .64 .18	IFET 2510 84 .23 1.11	007) Marsq 1.82 .86 .31	2.2 FIT 25T 0 .2 1.0
NEAN SER MEAN SER P.SD S.SO	Person ME al SCORE-TO ALPHA (NE ZED (50 T) TOTAL SCORE 15.2 .9 4.6 4.7	AM - 17 - MEASURE (20) Purson TEM) RELIAN COUNT 30.0 .0 .0	CORRELATION I RAW SCORE MULITY + .R MEASLIFE .88 .16 .88 .82	- 1.00 "TEST" 5 "NOOEL 5.E. .42 .81 .83 .84	RELIABILI 1.00 .84 .18 .15	IFET 2510 84 .23 1.11 1.13	0011 Marsq 1.02 .06 .31 .32	2.24 FIT 251 0 .2 1.0 1.0
NEAN SER NEACH MEAN SER P.50 S.50 MX.	Person ME al SCORE-TO ALPHA (NR ZED (50 TT TOTAL SCORE 15.2 .9 4.6 4.7 24.0	AW17 - MEASURE (20) Purson EM) RELIAN COUNT 30.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ORRELATION I RAW SCORE DULTYR MEASURE .08 .16 .88 .82 2.15	= 1.00 TEST 9 MODEL 5.E. .42 .01 .03 .03 .04 .55	PELISEILT 19 1.00 .04 .18 .15 1.40	IFTT 2510 84 .23 1.11 1.13 2.67	0011 Marsq 1.02 .06 .31 .32 2.11	2.2 FIT 25T 0 .2 1.0 1.0 2.5
NEAN MEACH MEACH MEAN SEM P.SD S.SD MAX. MEN.	Person ME SCORE-TC ALPHA (KE ZED (50 11 TOTAL SCORE 15.2 .9 4.6 4.7 24.0 4.0	AW - 17 - MEASURE (20) Purson TM) RELIAU COUNT 30.0 .0 30.0 30.0 30.0	ORRELATION 1 RAW SCORE 1011TYR MEASURE .88 .15 .88 .82 2.15 .1.61	= 1.00 TEST 5 WODEL 5.F. .42 .01 .04 .04 .04 .05 .04	11 11 11 1.00 .84 .18 1.35 1.35 .67	IFET 25TD 84 23 1.11 1.13 2.67 -2.61	561 - 0071 MISQ 1.02 .06 .31 .32 2.11 .61	2.2 FIT 25T 0 1.0 2.5 -2.2
NEAN SEN SEN P.SD S.SD MX. MEN.	Person ME SCORE-TC ALPHA (KE ZED (50 11 TOTAL SCORE 15.2 .9 4.6 4.7 24.0 4.0	AW - 17 - MEASURE (20) Purson TH) RELIAI COUNT 30.0 .0 30.0 30.0 30.0 7000 CO	ORRELATION I RAM SCORE ILLITYR MEASLITE .88 .16 .82 2.15 .1.61	= 1.00 "TEST" 5 "MODEL 5.1. .42 .01 .03 .84 .49	11 11 11 11 11 11 11 11 11 11 11 11 11	FT = .38 (FET 2510 84 23 1.11 1.13 2.67 -2.61	0079 MISQ 1.82 .86 .31 .32 2.11 .61	2.2 FIT 25T 0 .2 1.0 2.5 -2.2
MEAN MEAN SEM P.SD S.SO MAX. MEN. REAL R	Person AE SCORE-TC ALPHA (KR ZED (50 17 TOTAL SCORE 15.2 .9 4.5 4.7 24.0 4.0 SE .44	AW - 17 - MEASURE (20) Parson TN) RELIAL COUNT 30.0 .0 30.0 30.0 30.0 180.0 180.0	ORRELATION I RAW SCORE ULLITY89 .16 .88 .15 .88 .215 .1.61 .67 SEP	= 1.00 "TEST" 5.T. .42 .81 .03 .64 .54 .40 A8ATION	RELIANTI 10 1.00 .84 .18 1.45 .67 1.54 It.	IFT78 04 .23 1.11 1.13 2.67 -2.61 04 8EL	007) MISQ 1.82 .06 .31 .32 7.11 .61	2.2 FIT 25T 0 1.0 2.5 -2.2 .7

Figure 2. Summary Statistics Person

In class XII C, the reliability of the participants showed a value of 0.73, which was classified as moderate. This shows that the instrument has a moderate ability to distinguish students' level of ability. The reliability of the question item reached 0.70, which was also classified as moderate, indicating that the questions had a pretty good level of consistency but were not optimal. Cronbach's Alpha score of 0.76 indicates that the internal consistency of the questions is quite good but not optimal to achieve a higher standard. In addition, Person Separation has a score of 1.64, which shows that the test's ability to separate students based on their ability level is quite adequate. On the other hand, Item Separation of 1.54 is quite good, indicating that the problem can distinguish the difficulty level of the question item.

From the results of the reliability test in grades XII B and XII C, it can be concluded that the questions made have shown relatively good reliability, with reliability values ranging from 0.69 to 0.73, which shows the ability of the instrument to distinguish the ability of students moderately. The internal consistency of the questions, measured using Cronbach's Alpha, also showed a moderate result, with a score between 0.71 and 0.76, indicating that the questions were entirely consistent but could still be improved.

3. Misconceptions

Misconceptions are a major challenge in learning chemical concepts, particularly redox and

electrochemical reactions, as they hinder problemsolving abilities. To assess the extent of misconceptions, an analysis of students' responses in classes B and C was conducted, categorizing them into understanding, misconceptions, and nonunderstanding. Table 4 highlights variations in comprehension between the two classes, helping identify areas that require further learning improvements. The following are the results of the percentage analysis of misconceptions in both classes:

Fable 4. Percentage	e of Class B and	C Misconceptions
---------------------	------------------	------------------

Indicator		stand	Misconceptions		Not Understood	
Indicator	В	С	В	С	В	С
Explain the working principle, principal components, and differences between voltaic and electrolysis cells.	3,33%	3,33%	70,00%	70,00%	26,67%	26,67%
Demonstrates the redox reaction products that occur in the anode and cathode during electrolysis of various solutions	20,00%	20,00%	46,67%	46,67%	33,33%	33,33%
Understanding how the environment affects the rate of iron corrosion.	63,33%	63,33%	13,33%	13,33%	23,33%	23,33%
Interpreting the results of the cell's E° value to predict whether or not the voltaic cell reaction will occur spontaneously.	13,33%	13,33%	33,33%	33,33%	53,33%	53,33%
Predicting the cell diagram that occurs in a series of voltaic cells.	3,33%	3,33%	60,00%	60,00%	36,67%	36,67%
Apply electrolysis concepts to explain the metal plating process, including ion migration and reactions occurring in the electrodes.	10,00%	10,00%	26,67%	26,67%	63,33%	63,33%
Calculate the rate of corrosion on a given material under specific environmental conditions.	20,00%	20,00%	23,33%	23,33%	56,67%	56,67%
Calculating the Standard Cell Potential (E° of the cell) using the Nernst Equation	30,00%	30,00%	40,00%	40,00%	30,00%	30,00%
Evaluate the standard electrode potential concept to select the right metals in cathodic protection and predict the outcome of electrochemical reactions between two metals in solution.	6,67%	6,67%	46,67%	46,67%	46,67%	46,67%
Analyze redox reactions occurring in anodes and cathodes in electrolysis cells with inert and non-inert electrodes	16,67%	16,67%	23,33%	23,33%	60,00%	60,00%
Faraday's law explains the relationship between the electric current used and the corrosion rate observed.	13,33%	13,33%	26,67%	26,67%	60,00%	60,00%
Analyzing the concept of volta cells in fuel cell circuits based on images.	20,00%	20,00%	40,00%	40,00%	40,00%	40,00%
Demonstrates the redox reaction products that occur in the anode and cathode during electrolysis of various solutions.	6,67%	6,67%	30,00%	30,00%	63,33%	63,33%
Interpreting the results of the cell's E° value to predict whether or not the voltaic cell reaction will occur spontaneously.	16,67%	16,67%	33,33%	33,33%	50,00%	50,00%
Evaluate the standard electrode potential concept to select the right metals in cathodic protection and predict the outcome of electrochemical reactions between two metals in solution.	10,00%	10,00%	46,67%	46,67%	43,33%	43,33%

Table 4 reveals significant differences in students' understanding, misconceptions, and nonunderstanding between classes B and C. In class B, comprehension was low (16.89%), with high misconceptions (37.33%) and non-understanding (45.78%). The highest understanding was in "How the environment affects iron corrosion" (63.33%), while the lowest was in "Predicting cell diagrams in voltaic cells" (3.33%). In class C, understanding (33.11%), misconceptions (32.89%), and nonunderstanding (34.00%) were more balanced. Despite these differences, both classes struggle with misconceptions, emphasizing the need for a more effective learning approach and better analysis of

students' information sources to improve percentage of information sources that students electrochemistry understanding. Table 5 shows the access for each question: **Table 5.** Percentage of Class B and C Information Sources

No Question	Package Book Internet		Teacher		Friends		Parents			
	В	С	В	С	В	С	В	С	В	С
1	16,67%	16,67%	60,00%	60,00%	20,00%	10,00%	3,33%	13,33%	0,00%	0,00%
2	6,67%	26,67%	50,00%	46,67%	16,67%	6,67%	26,67%	20,00%	0,00%	0,00%
3	3,33%	16,67%	26,67%	40,00%	6,67%	10,00%	63,33%	33,33%	0,00%	0,00%
4	10,00%	13,33%	83,33%	50,00%	3,33%	6,67%	3,33%	30,00%	0,00%	0,00%
5	10,00%	10,00%	46,67%	40,00%	6,67%	13,33%	36,67%	36,67%	0,00%	0,00%
6	16,67%	6,67%	33,33%	66,67%	6,67%	10,00%	43,33%	16,67%	0,00%	0,00%
7	10,00%	3,33%	20,00%	83,33%	0,00%	3,33%	70,00%	10,00%	0,00%	0,00%
8	23,33%	10,00%	60,00%	33,33%	6,67%	10,00%	10,00%	46,67%	0,00%	0,00%
9	3,33%	0,00%	30,00%	70,00%	3,33%	3,33%	63,33%	26,67%	0,00%	0,00%
10	13,33%	6,67%	56,67%	40,00%	0,00%	3,33%	30,00%	50,00%	0,00%	0,00%
11	3,33%	13,33%	50,00%	60,00%	26,67%	10,00%	20,00%	16,67%	0,00%	0,00%
12	6,67%	0,00%	40,00%	33,33%	20,00%	26,67%	33,33%	40,00%	0,00%	0,00%
13	3,33%	3,33%	43,33%	33,33%	6,67%	33,33%	46,67%	30,00%	0,00%	0,00%
14	6,67%	26,67%	53,33%	40,00%	16,67%	23,33%	23,33%	10,00%	0,00%	0,00%
15	26,67%	3,33%	50,00%	50,00%	13,33%	6,67%	10,00%	40,00%	0,00%	0,00%

Table 5 shows that students in classes B and C mainly rely on the internet for information, with usage ranging from 50% to 83%. Despite this, misconceptions remain high, indicating a lack of verification. Peer discussions are also common, particularly in questions 3 and 9 for class B (63.33%) and questions 3 and 8 for class C (33.33% and 46.67%). However, peer discussions can spread misinformation. Textbooks and teachers are less frequently used, though they provide accurate explanations. Parents are not used as a learning resource at all. While class C has a more balanced understanding, misconceptions persist in both classes. Strengthening the role of teachers and textbooks, guiding students in evaluating online sources, and monitoring peer discussions can help improve understanding and reduce misconceptions in electrochemical concepts.

D. CONCLUSIONS AND SUGGESTIONS

The conclusion of this study shows that a five-tier diagnostic test was pictorial-based developed with 30 valid and reliable questions to identify misconceptions in electrochemical cell matter. The average Content Validity Index (CVI) value of 1.00 indicates that this instrument is very suitable for use. In contrast, the reliability with Cronbach's Alpha value ranging from 0.71 to 0.76 shows quite good consistency, although it can still be improved. Most students have misconceptions about essential concepts, such as the working principle of voltaic cells and electrolysis, electron flow, and prediction of reaction spontaneity using the E^o value of the cell. The primary source of this misconception comes from misdirected information, especially from the internet and discussions with friends. Visual elements in diagnostic tests help understand abstract concepts, but their effectiveness depends on the instructions' clarity and the questions' context.

As a suggestion, Revision is needed on complex questions to improve clarity. Teachers are expected to provide structured explanations and integrate diagnostic data in learning. Students are advised to use package books and reliable sources. In addition, training on the use of diagnostic tests needs to be carried out so that misconceptions can be overcome.

ACKNOWLEDGMENTS

The author would like to thank all parties who have supported this research, especially Sunan Kalijaga State Islamic University Yogyakarta, supervisors, validators (chemistry lecturers and teachers), as well as students and teachers of MAN 3 Bantul. The award is also addressed to the family and colleagues for their support and motivation. Hopefully this research will be useful for the world of education, especially in improving the understanding of chemical concepts.

LIST OF REFERENCES

Abd.Rachman, F., Ahsanunnisa, R., & Nawawi, E. (2017). Development of LKPD Based on Critical Thinking of Solubility Materials and Solubility Results in Chemistry Subjects in High School. *ALKIMIA : Jurnal Ilmu Kimia Dan Terapan, 1*(1), 16–25.

https://doi.org/10.19109/alkimia.v1i1.1326

- Ahmad, N. J., & Lah, Y. C. (2013). A Designed Teaching Sequence as a Tool to Improve Students ' Conceptual Understanding of the Conductivity in the Electrolytic Cell A Designed Teaching Sequence as a Tool to Improve Students ' Conceptual Understanding of the Conductivity in the Electrolyte. *Canadian Center of Science and Education*, 9(2). https://doi.org/10.5539/ass.v9n2p298
- Akker, J. an van den, Branch, R. M., Gustafson, K., Nieveen, N., & Plomp, T. (1999). Design Approaches and Tools in Education and Training. In *Stochastic Environmental Research and Risk Assessment* (Vol. 29, Issue 7). https://doi.org/10.1007/s00477-014-0937-9
- Annisa, R., Astuti, B., & Mindyarto, B. N. (2019). Four Tier Diagnostic Test for Identification of Students' Understanding and Misconceptions on Regular Circular Motion Material. Jurnal Pendidikan Fisika Dan Kelilmuan (JPFK), 5(1), 25–32.

https://doi.org/http://doi.org/10.25273/jpfk.v 5i1.3546

Budiharti, R., Radiyono, Y., Rizky, N., Nuraini, A., Putri, H. V., Saputro, D. E., & Adhitama, E. (2018). Development of a Four-Stage Misconception Diagnostic Test on Kinematics. *Jurnal Ilmiah Pendidikan,2,237–249*. https://doi.org/http://dx.doi.org/10.21831/cp .v37i2.16491

- Hanson, R. (2015). Identifying Students' Alternative Concepts in Basic Chemical Bonding – A Case Study of Teacher Trainees in the University of Education, Winneba. *International Journal of Innovative Research and Development*, 4(1), 115–122.
- Hermita, N., Suhandi, A., Syaodih, E., Samsudin, A., Isjoni, Johan, H., Rosa, F., Setyaningsih, R., Sapriadil, & Safitri, D. (2017). Constructing and Implementing a Four-Tier Test about Static Electricity to Diagnose Pre-service Elementary School Teacher Misconceptions. International Conference on Mathematics and Science Education. https://doi.org/10.1088/1742-6596/895/1/012167
- Inggit, S. M., Liliawati, W., & Suryana, I. (2021). Identification of Misconceptions and Their Causes Using the Five-Tier Fluid Static Test (5TFST) Instrument in Grade XI Students of Senior High School. *Journal of Teaching and Learning Physics*, 6(1), 49–68. https://doi.org/10.15575/jotalp.v6i1.11016
- Kaltakci-gurel, D., Eryilmaz, A., & Mcdermott, L. C. (2017). Development and application of a fourtier test to assess pre-service physics teachers' misconceptions about geometrical optics. *Research in Science & Technological Education*, 5143(April), 1–23.
- Kristiana, E., Sidauruk, S., & Meiliawati, R. (2020). Difficulties of Class X MIA State High School Students in Palangka Raya City for the 2018/2019 Academic Year in Understanding the Concept of Lewis Structure Using the Two-Tier Multiple Choiche Instrument. *Jurnal Ilmiah Kanderang Tingang*, *11*(1), 200–208. https://doi.org/10.37304/jikt.v11i1.87
- Martin Tessmer. (1993). *Planning and Conducting Formative Evaluations*. Routledge Taylor & Francis Group.
- Muderawan, I. W., Wiratma, I. G. L., & Nabila, M. Z. (2019). Analysis of the Factors Causing Students' Learning Difficulties in Solubility Materials and Solubility Results. *Jurnal Pendidikan Kimia Indonesia*, *3*(1), 17. https://doi.org/10.23887/jpk.v3i1.20944
- Nuraisyah, S. A., Nahadi, & Hernan. (2022). Profile of Misconception of High School Students in the City of Bandung on Salt Hydrolysis Materials Using a Pictorial-Based Two-Level Multiple-Choice Diagnostic Test. Jurnal Riset Dan Praktik Pendidikan Kimia, 10(1), 77–85.

- Nurlita, S. (2022). Development of four-tier diagnostic tests based on science process skills to identify misconceptions in redox materials. *Journal of Natural Science Learning*, *02*(02), 90–103.
- Permana, I., Permata, F., Latifah, U., Al-anshori, J., & Rachman, S. D. (2019). Efforts to Improve Understanding of Chemistry and Its Application Through Socialization and Practicum Methods. *Jurnal Pengabdian Kepada Masyarakat*, 4(6), 129–132.
- Putri, E. S., & Rinaningsih. (2021). Review: Diagnostic Tests as Formative Tests in Chemistry Learning. *Journal of Chemical Education*, 10(1), 20–27.
- Rahayu, S., Treagust, D. F., Chandrasegaran, A. L., Kita,
 M., & Ibnua, S. (2011). Assessment of electrochemical concepts: A comparative study involving senior high-school students in Indonesia and Japan. *Research in Science and Technological Education*, 29(2), 169–188. https://doi.org/10.1080/02635143.2010.5369 49
- Roghdah, S. J., Zammi, M., & Mardhiya, J. (2021). Development of Four-Tier Multiple Choice Diagnostic Test to Determine the Level of Students' Understanding of Concepts in Thermochemical Materials. *Phenomenon*: *Jurnal Pendidikan MIPA*, 11(1), 57–74.
- Rokhim, D. A., Rahayu, S., & Dasna, I. W. (2023). Analysis of Chemical Misconceptions and Their Diagnostic Instruments: Literature Review. Jurnal Inovasi Pendidikan Kimia, 17(1), 17–28. https://doi.org/10.15294/jipk.v17i1.34245
- Rosita, I., Liliawati, W., & Samsudin, A. (2020). Development of Five-Tier Newton's Laws Test (5TNLT) Instrument to Identify Students' Misconceptions and Causes of Misconceptions. Jurnal Pendidikan Fisika Dan Teknologi (JPFT), 6(2).

https://doi.org/https://doi.org/10.29303/jpft. v6i2.2018

- Santi, A. N. I., & Rahayu, M. (2022). Analysis of Students' Misconceptions on Electrolyte and Non-Electrolyte Solution Materials Using Pictorial-Based Four-Tier Diagnostic Tesr Multirepresentation Instrument. *Journal of Chemical Education*, 11(3), 210–219.
- Sari, D. A. (2021). Application of Inquiry-Based Learning to Electrochemistry Materials on Conceptual Understanding, Mental Models and Student Attitudes. *Orbital: Jurnal Pendidikan Kimia*, 5(2), 137–150. https://doi.org/10.19109/ojpk.v5i2.9178
- Savira, I., Wardani, S., Harjito, & Noorhayati, A. (2019). Design of Three Tiers Multiple Choice

Test Instruments for the Analysis of Student Misconceptions Regarding Buffer Solutions. *Jurnal Inovasi Pendidikan Kimia*, 13(1), 2277– 2286.

https://doi.org/https://doi.org/10.15294/jipk. v13i1.15924

- Simamora, R., Maison, & Kurniawan, W. (2023). Identification of Misconceptions of Students Using Five-Tier Diagnostic Test on Static Fluid Materials at SMAN 7 Jambi City. Jurnal Penelitian Pendidikan Fisika, 8(2), 139–144. https://doi.org/10.36709/jipfi.v8i2.18
- Sugiyono. (2013). *Quantitative, Qualitative and R&D Research Methods* (19th). CV Alfabeta.
- Sugiyono. (2022). *Quantitative, Qualitative, and R&D Research Methods*. Penerbit Alfabeta.
- Tavassoli, A., Jahandar, S., & Khodabandehlou, M. (2013). The Effect of Pictorial Contexts on Reading Comprehension of Iranian High School Students: a Comparison Between Pre-Vs. During Reading Activities. *Indian Journal of Fundamental and Applied Life Sciences*, 3(3), 553–565.
- Virgiawan, W., Nahadi, Kusrijadi, A., Siswaningsih, W., & Rahmawati, T. (2020). Profile of Misconception of State High School Students in the City of Bandung on Mol Concept Material Using a Pictorial-Based Two-Tier Diagnostic Test. Jurnal Riset Dan Praktik Pendidikan Kimia, 8(1).
- Wahyuni, S., Maison, & Hidayat, M. (2022). Identification of Misconceptions of the Five Tier Diagnostic Test on Energy Matter and the Law of Energy Conservation. *Jurnal Metaedukasi: Jurnal Ilmiah Pendidikan*, 4(1), 45–53.