Evaluating the Effectiveness of Artificial Intelligence Models in Predicting Economic Indicators: an in-Depth Review
Abstract
Abstrak: Di era digital saat ini, kecerdasan buatan (artificial intelligence/AI) memainkan peran yang semakin penting dalam analisis ekonomi; namun, efektivitas berbagai model AI dalam memprediksi indikator ekonomi masih memerlukan evaluasi menyeluruh. Penelitian ini bertujuan untuk mengatasi kesenjangan ini dengan menilai efektivitas model AI dalam konteks yang lebih luas melalui pendekatan tinjauan literatur yang sistematis. Penelitian ini mengidentifikasi metode yang efektif dan mengeksplorasi tantangan dan keberhasilan yang terkait dengan implementasinya. Dengan menggunakan pendekatan penelitian kualitatif dan tinjauan literatur sistematis, literatur yang digunakan bersumber dari database pengindeksan seperti Scopus, DOAJ, dan Google Scholar, dengan tanggal publikasi mulai dari tahun 2014 hingga 2024. Hasil evaluasi menunjukkan bahwa model AI, khususnya deep learning dan model hybrid, menawarkan keuntungan yang substansial dibandingkan metode konvensional dalam memprediksi indikator ekonomi. Jaringan syaraf, seperti LSTM dan CNN, unggul dalam menangkap pola temporal dan spasial yang kompleks, sementara model hibrida meningkatkan akurasi prediksi dengan mengintegrasikan berbagai teknik AI. Penggabungan sumber data alternatif, seperti media sosial dan tren penelusuran, memberikan wawasan tambahan di luar data ekonomi tradisional, sehingga memperkaya prediksi. Explainable AI (XAI) semakin mendukung efektivitas model-model ini dengan meningkatkan transparansi dan kepercayaan di antara para pemangku kepentingan. Selain itu, Natural Language Processing (NLP) meningkatkan akurasi prediksi dengan menganalisis sentimen pasar dan berita ekonomi, sehingga menambah konteks yang berharga.
Abstract: In the current digital era, artificial intelligence (AI) plays an increasingly pivotal role in economic analysis; however, the effectiveness of various AI models in predicting economic indicators still requires thorough evaluation. This research aims to address this gap by assessing the effectiveness of AI models within a broader context through a systematic literature review approach. The study identifies effective methods and explores the challenges and successes associated with their implementation. Employing a qualitative research approach and systematic literature review, the literature used is sourced from indexing databases such as Scopus, DOAJ, and Google Scholar, with publication dates ranging from 2014 to 2024. The evaluation results reveal that AI models, particularly deep learning and hybrid models, offer substantial advantages over conventional methods in predicting economic indicators. Neural networks, such as LSTM and CNN, excel at capturing complex temporal and spatial patterns, while hybrid models enhance predictive accuracy by integrating various AI techniques. The incorporation of alternative data sources, such as social media and search trends, provides additional insights beyond traditional economic data, enriching predictions. Explainable AI (XAI) further supports the effectiveness of these models by increasing transparency and trust among stakeholders. Additionally, Natural Language Processing (NLP) enhances predictive accuracy by analyzing market sentiment and economic news, thereby adding valuable context.
Keywords
Full Text:
DOWNLOAD [PDF]References
Abdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. In Electronics (Switzerland). https://doi.org/10.3390/electronics10212689
Abidoye, R. B., Chan, A. P. C., Abidoye, F. A., & Oshodi, O. S. (2019). Predicting property price index using artificial intelligence techniques: Evidence from Hong Kong. International Journal of Housing Markets and Analysis. https://doi.org/10.1108/IJHMA-11-2018-0095
Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2014.10.001
Agu, S. C., Onu, F. U., Ezemagu, U. K., & Oden, D. (2022). Predicting gross domestic product to macroeconomic indicators. Intelligent Systems with Applications. https://doi.org/10.1016/j.iswa.2022.200082
Ahmed, N., Assadi, M., Ahmed, A. A., Banihabib, R., & Zhang, Q. (2024). Assessing the impact of borehole field data on AI-based deep learning models for heating and cooling prediction. Geothermics. https://doi.org/10.1016/j.geothermics.2023.102867
Aljuaid, T., & Sasi, S. (2017). Proper imputation techniques for missing values in data sets. Proceedings of the 2016 International Conference on Data Science and Engineering, ICDSE 2016. https://doi.org/10.1109/ICDSE.2016.7823957
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. https://doi.org/10.1016/j.inffus.2019.12.012
Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R. (2019). Predicting the direction of stock market prices using tree-based classifiers. North American Journal of Economics and Finance. https://doi.org/10.1016/j.najef.2018.06.013
Bejger, S., & Elster, S. (2020). Artificial Intelligence in economic decision making: how to assure a trust? Ekonomia i Prawo. https://doi.org/10.12775/eip.2020.028
Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2018). Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies. https://doi.org/10.3390/en11071636
Cashin, P., Mohaddes, K., & Raissi, M. (2017). China’s slowdown and global financial market volatility: Is world growth losing out? Emerging Markets Review. https://doi.org/10.1016/j.ememar.2017.05.001
Chen, C., Hu, Y., Marimuthu, K., & Kumar, P. M. (2021). Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2021.101358
Dixit, A., & Jain, S. (2022). Contemporary Approaches to Analyze Non-stationary Time-series: Some Solutions and Challenges. Recent Advances in Computer Science and Communications. https://doi.org/10.2174/2666255815666220523125447
Drehmann, M., & Juselius, M. (2014). Evaluating early warning indicators of banking crises: Satisfying policy requirements. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2013.10.002
Elmousalami, H. H. (2021). Comparison of Artificial Intelligence Techniques for Project Conceptual Cost Prediction: A Case Study and Comparative Analysis. In IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2020.2972078
Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory Review of Deep Learning for Prediction Models With Big Data. In Frontiers in Artificial Intelligence. https://doi.org/10.3389/frai.2020.00004
Ernst, E., Merola, R., & Samaan, D. (2019). Economics of Artificial Intelligence: Implications for the Future of Work. IZA Journal of Labor Policy. https://doi.org/10.2478/izajolp-2019-0004
Günay, M. E. (2016). Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy. https://doi.org/10.1016/j.enpol.2015.12.019
Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. In International Journal of Intelligent Networks. https://doi.org/10.1016/j.ijin.2022.08.005
Hammami, Z., Sayed-Mouchaweh, M., Mouelhi, W., & Ben Said, L. (2020). Neural networks for online learning of non-stationary data streams: a review and application for smart grids flexibility improvement. Artificial Intelligence Review. https://doi.org/10.1007/s10462-020-09844-3
Hansen, K. B., & Borch, C. (2022). Alternative data and sentiment analysis: Prospecting non-standard data in machine learning-driven finance. Big Data and Society. https://doi.org/10.1177/20539517211070701
Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics. https://doi.org/10.1016/j.ijpe.2014.04.018
Hutter, F., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2014). Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence. https://doi.org/10.1016/j.artint.2013.10.003
Iqbal, R., Doctor, F., More, B., Mahmud, S., & Yousuf, U. (2020). Big data analytics: Computational intelligence techniques and application areas. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2018.03.024
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management. https://doi.org/10.1142/S2424862221300040
Jena, P. R., Majhi, R., Kalli, R., Managi, S., & Majhi, B. (2021). Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster. Economic Analysis and Policy. https://doi.org/10.1016/j.eap.2020.12.013
Kang, M., & Tian, J. (2018). Machine Learning: Data Pre‐processing. In Prognostics and Health Management of Electronics. https://doi.org/10.1002/9781119515326.ch5
Khan, K., Ahmad, W., Amin, M. N., Aslam, F., Ahmad, A., & Al-Faiad, M. A. (2022). Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. Materials. https://doi.org/10.3390/ma15103430
Khan, M. T., Durrani, M., Ali, A., Inayat, I., Khalid, S., & Khan, K. H. (2016). Sentiment analysis and the complex natural language. In Complex Adaptive Systems Modeling. https://doi.org/10.1186/s40294-016-0016-9
Kumari, P., & Toshniwal, D. (2021). Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting. Applied Energy. https://doi.org/10.1016/j.apenergy.2021.117061
Lai, G., Chang, W. C., Yang, Y., & Liu, H. (2018). Modeling long- and short-term temporal patterns with deep neural networks. 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2018. https://doi.org/10.1145/3209978.3210006
Langer, M., Oster, D., Speith, T., Hermanns, H., Kästner, L., Schmidt, E., Sesing, A., & Baum, K. (2021). What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence. https://doi.org/10.1016/j.artint.2021.103473
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. In ACM Computing Surveys. https://doi.org/10.1145/3136625
Liu, J., Chang, H., Forrest, J. Y. L., & Yang, B. (2020). Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2020.120142
Lolon, E., Hamidieh, K., Weijers, L., Mayerhofer, M., Melcher, H., & Oduba, O. (2016). Evaluating the relationship between well parameters and production using multivariate statistical models: A middle Bakken and three forks case history. Society of Petroleum Engineers - SPE Hydraulic Fracturing Technology Conference, HFTC 2016. https://doi.org/10.2118/179171-ms
Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., & Zhang, G. (2015). Transfer learning using computational intelligence: A survey. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2015.01.010
Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks. 34th International Conference on Machine Learning, ICML 2017.
Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. N. (2022). Explainable artificial intelligence: a comprehensive review. Artificial Intelligence Review. https://doi.org/10.1007/s10462-021-10088-y
Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction. https://doi.org/10.1007/978-3-030-89010-0_4
Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data. https://doi.org/10.1186/s40537-014-0007-7
Nijman, S. W. J., Leeuwenberg, A. M., Beekers, I., Verkouter, I., Jacobs, J. J. L., Bots, M. L., Asselbergs, F. W., Moons, K. G. M., & Debray, T. P. A. (2022). Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review. In Journal of Clinical Epidemiology. https://doi.org/10.1016/j.jclinepi.2021.11.023
Ramírez, K. M., Hormaza, J. M., & Soto, S. V. (2020). Artificial intelligence and its impact on the prediction of economic indicators. ACM International Conference Proceeding Series. https://doi.org/10.1145/3410352.3410827
Rampini, L., & Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment and Finance. https://doi.org/10.1108/JPIF-08-2021-0073
Reich, N. G., Lessler, J., Sakrejda, K., Lauer, S. A., Iamsirithaworn, S., & Cummings, D. A. T. (2016). Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error. American Statistician. https://doi.org/10.1080/00031305.2016.1148631
Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A., & Pablo, J. D. E. (2021). Artificial intelligence in business and economics research: Trends and future. Journal of Business Economics and Management. https://doi.org/10.3846/jbem.2020.13641
Sagaert, Y., Kourentzes, N., Aghezzaf, E. H., & ... (2015). Variable selection of exogenous leading indicators in demand forecasting. … on Forecasting (ISF ….
Saranya, A., & Subhashini, R. (2023). A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends. In Decision Analytics Journal. https://doi.org/10.1016/j.dajour.2023.100230
Sehgal, N., & Pandey, K. K. (2015). Artificial intelligence methods for oil price forecasting: a review and evaluation. Energy Systems. https://doi.org/10.1007/s12667-015-0151-y
Shepperd, M., Bowes, D., & Hall, T. (2014). Researcher bias: The use of machine learning in software defect prediction. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2014.2322358
Sofaer, H. R., Hoeting, J. A., & Jarnevich, C. S. (2019). The area under the precision-recall curve as a performance metric for rare binary events. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13140
Tang, Y. M., Chau, K. Y., Li, W., & Wan, T. W. (2020). Forecasting economic recession through share price in the logistics industry with artificial intelligence (AI). Computation. https://doi.org/10.3390/COMPUTATION8030070
Vicari, M., & Gaspari, M. (2021). Analysis of news sentiments using natural language processing and deep learning. AI and Society. https://doi.org/10.1007/s00146-020-01111-x
Wei, N., Li, C., Peng, X., Zeng, F., & Lu, X. (2019). Conventional models and artificial intelligence-based models for energy consumption forecasting: A review. Journal of Petroleum Science and Engineering. https://doi.org/10.1016/j.petrol.2019.106187
Xu, D., Zhang, Q., Ding, Y., & Zhang, D. (2022). Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15325-z
Ying, X. (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1168/2/022022
Zhang, Y., & Hamori, S. (2020). The Predictability of the Exchange Rate When Combining Machine Learning and Fundamental Models. Journal of Risk and Financial Management. https://doi.org/10.3390/jrfm13030048
Zhang, Y., & Yang, Y. (2015). Cross-validation for selecting a model selection procedure. Journal of Econometrics. https://doi.org/10.1016/j.jeconom.2015.02.006
Zheng, Y., Xu, Z., & Xiao, A. (2023). Deep learning in economics: a systematic and critical review. Artificial Intelligence Review. https://doi.org/10.1007/s10462-022-10272-8
DOI: https://doi.org/10.31764/jua.v29i1.30341
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Saba Mehmood, Wasim Raza

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ulul Albab: Majalah Universitas Muhammadiyah Mataram
Contact Admin:
Email: [email protected]
WhatsApp: +62 878-6400-3847
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ulul Albab: Majalah Universitas Muhammadiyah Mataram already indexed: