Penerapan Deep Learning dalam Menganalisis Sentimen di Media Sosial
Abstract
Abstract: This research aims to investigate the application of deep learning for sentiment analysis in social media. A systematic literature review was conducted to identify, assess, and interpret relevant research evidence on this topic. Journal searches were focused on publications from 2014 to 2024 using indexing sources such as Google Scholar, DOAJ, and Scopus. Inclusion criteria were applied to select studies directly related to deep learning and sentiment analysis in the context of social media. Subsequently, data from the selected studies were systematically extracted and organized for comprehensive analysis. The research findings demonstrate that deep learning models such as BERT, CNN, LSTM, and GRU outperform traditional methods like SVM in terms of accuracy, recall, and F1 score in social media sentiment analysis. The combination of BERT+CNN showed the best performance in accuracy and F1 score. The frequently used deep learning architecture is the Transformer model, particularly BERT, due to its high accuracy capabilities. The Hinglish dataset is commonly used to train deep learning models for sentiment analysis in social media. Future research directions may include further exploring the integration of deep learning with advanced natural language processing techniques such as RoBERTa in the context of social media sentiment analysis. Additionally, in-depth studies on factors influencing the success of deep learning models in sentiment analysis, including data volume, algorithms used, and effective NLP techniques, would contribute significantly to advancing the field of social media sentiment analysis.
Abstrak: Penelitian ini bertujuan untuk menyelidiki penerapan deep learning untuk menganalisis sentimen di media sosial. Penelitian ini melakukan tinjauan literatur sistematis untuk mengidentifikasi, menilai, dan menafsirkan bukti penelitian yang relevan mengenai topik ini. Pencarian jurnal dilakukan dengan fokus pada publikasi terbitan antara tahun 2014 hingga 2024 dari sumber indeks seperti Google Scholar, DOAJ, dan Scopus. Kriteria inklusi digunakan untuk memilih studi-studi yang secara langsung terkait dengan deep learning dan analisis sentimen dalam konteks media sosial. Setelah itu, data-data dari studi-studi yang terpilih diekstraksi dan disusun secara sistematis untuk dianalisis secara komprehensif. Hasil penelitian menunjukkan bahwa model-model pembelajaran mendalam seperti BERT, CNN, LSTM, dan GRU unggul dalam hal akurasi, ingatan, dan skor F1 dibandingkan dengan metode tradisional seperti SVM dalam analisis sentimen dalam media sosial. Kombinasi model BERT+CNN terbukti memiliki kinerja terbaik dalam hal akurasi dan skor F1. Arsitektur pembelajaran mendalam yang sering digunakan adalah model Transformer, khususnya BERT, karena kemampuannya mencapai akurasi tinggi. Dataset Hinglish umum digunakan untuk melatih model deep learning dalam analisis sentimen media sosial.
Keywords
Full Text:
DOWNLOAD [PDF]References
Abdul Ameer, S. A., Khalid, R., Al Mansor, A. H. O., & Singh, P. (2023). Hybrid Deep Neural Networks for Improved Sentiment Analysis in Social Media. ICSCCC 2023 - 3rd International Conference on Secure Cyber Computing and Communications. https://doi.org/10.1109/ICSCCC58608.2023.10176880
Ahmad, F. Z., Arifandy, M. F. S., Caesarardhi, M. R., & Rakhmawati, N. A. (2021). Bagaimana Masyarakat Menyikapi Pembelajaran Tatap Muka: Analisis Komentar Masyarakat pada Media Sosial Youtube Menggunakan Algoritma Deep Learning Sekuensial dan LDA. Jurnal Linguistik Komputasional (JLK), 4(2), 40. https://doi.org/10.26418/jlk.v4i2.57
Alaramma, S. K., Habu, A. A., Ya’u, B. I., & Madaki, A. G. (2023). Sentiment analysis of sarcasm detection in social media. Gadau Journal of Pure and Allied Sciences. https://doi.org/10.54117/gjpas.v2i1.72
Aldan Nur Zen, M., & Sitanggang, A. S. (2023). ANALISIS DAMPAK SOSIAL MEDIA DALAM PENGEMBANGAN SISTEM INFORMASI. Cerdika: Jurnal Ilmiah Indonesia. https://doi.org/10.59141/cerdika.v3i7.647
Alqahtani, A., Khan, S. B., Alqahtani, J., AlYami, S., & Alfayez, F. (2023). Sentiment Analysis of Semantically Interoperable Social Media Platforms Using Computational Intelligence Techniques. Applied Sciences (Switzerland). https://doi.org/10.3390/app13137599
Anjana Thampy, S., & Jane Rubel Angelina, J. (2023). Deep Learning Architectures Based Sentiment Analysis Systematic Literature Review. 2023 International Conference on Control, Communication and Computing, ICCC 2023. https://doi.org/10.1109/ICCC57789.2023.10164943
Başarslan, M. S., & Kayaalp, F. (2023). MBi-GRUMCONV: A novel Multi Bi-GRU and Multi CNN-Based deep learning model for social media sentiment analysis. Journal of Cloud Computing. https://doi.org/10.1186/s13677-022-00386-3
BAŞARSLAN, M. S., & KAYAALP, F. (2021). Sentiment Analysis on Social Media Reviews Datasets with Deep Learning Approach. Sakarya University Journal of Computer and Information Sciences. https://doi.org/10.35377/saucis.04.01.833026
Contreras Hernández, S., Tzili Cruz, M. P., Espínola Sánchez, J. M., & Pérez Tzili, A. (2023). Deep Learning Model for COVID-19 Sentiment Analysis on Twitter. New Generation Computing. https://doi.org/10.1007/s00354-023-00209-2
Das, S., & Singh, T. (2023). Sentiment Recognition of Hinglish Code Mixed Data using Deep Learning Models based Approach. Proceedings of the 13th International Conference on Cloud Computing, Data Science and Engineering, Confluence 2023. https://doi.org/10.1109/Confluence56041.2023.10048879
Deng, L., Yin, T., Li, Z., & Ge, Q. (2023). Sentiment Analysis of Comment Data Based on BERT-ETextCNN-ELSTM. Electronics (Switzerland). https://doi.org/10.3390/electronics12132910
Diaz Tiyasya Putra, & Erwin Budi Setiawan. (2023). Sentiment Analysis on Social Media with Glove Using Combination CNN and RoBERTa. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi). https://doi.org/10.29207/resti.v7i3.4892
Dominic, P., Purushothaman, N., Kumar, A. S. A., Prabagaran, A., Blessy, J. A., & John, A. (2023). Multilingual Sentiment Analysis using Deep-Learning Architectures. Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT 2023. https://doi.org/10.1109/ICSSIT55814.2023.10060993
Dwi Mulyani, N. S. R., & Suardiman, S. P. (2019). Efektivitas Pendekatan Deep Learning Terhadap Kontrol Diri Remaja Dalam Menggunakan Internet. Scholaria: Jurnal Pendidikan Dan Kebudayaan. https://doi.org/10.24246/j.js.2019.v9.i3.p227-238
Fatihah Rahmadayana, & Yuliant Sibaroni. (2021). Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi). https://doi.org/10.29207/resti.v5i5.3457
Ferdiana, R., Jatmiko, F., Purwanti, D. D., Ayu, A. S. T., & Dicka, W. F. (2019). Dataset Indonesia untuk Analisis Sentimen. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi (JNTETI). https://doi.org/10.22146/jnteti.v8i4.533
Fithriasari, K., Jannah, S. Z., & Reyhana, Z. (2020). Deep Learning for Social Media Sentiment Analysis. MATEMATIKA. https://doi.org/10.11113/matematika.v36.n2.1226
Fitroh, F., & Hudaya, F. (2023). Systematic Literature Review: Analisis Sentimen Berbasis Deep Learning. Jurnal Nasional Teknologi Dan Sistem Informasi. https://doi.org/10.25077/teknosi.v9i2.2023.132-140
Gandhi, P., Bhatia, S., & Alkhaldi, N. (2021). Sentiment analysis using deep learning. In Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches: Fundamentals, technologies and applications. https://doi.org/10.48175/ijarsct-17478
Ganie, A. G. (2023). Presence of informal language, such as emoticons, hashtags, and slang, impact the performance of sentiment analysis models on social media text? ArXiv Preprint ArXiv:2301.12303.
Hameed, R. A., Abed, W. J., & Sadiq, A. T. (2023). Evaluation of Hotel Performance with Sentiment Analysis by Deep Learning Techniques. International Journal of Interactive Mobile Technologies. https://doi.org/10.3991/ijim.v17i09.38755
Hebert, L., Makki, R., Mishra, S., Saghir, H., Kamath, A., & Merhav, Y. (2022). Robust Candidate Generation for Entity Linking on Short Social Media Texts. Proceedings of the Eighth Workshop on Noisy User-Generated Text (W-NUT 2022).
Huang, J. Y., Tung, C. L., & Lin, W. Z. (2023). Using Social Network Sentiment Analysis and Genetic Algorithm to Improve the Stock Prediction Accuracy of the Deep Learning-Based Approach. International Journal of Computational Intelligence Systems. https://doi.org/10.1007/s44196-023-00276-9
Indarta, Y., Ambiyar, A., Samala, A. D., & Watrianthos, R. (2022). Metaverse: Tantangan dan Peluang dalam Pendidikan. Jurnal Basicedu. https://doi.org/10.31004/basicedu.v6i3.2615
Jasim, Y. A., Saeed, M. G., & Raewf, M. B. (2022). Analyzing Social Media Sentiment: Twitter as a Case Study. Advances in Distributed Computing and Artificial Intelligence Journal. https://doi.org/10.14201/adcaij.28394
Kansara, D., & Sawant, V. (2020). Comparison of Traditional Machine Learning and Deep Learning Approaches for Sentiment Analysis. https://doi.org/10.1007/978-981-15-3242-9_35
Khan, J., & Lee, S. (2021). Article enhancement of text analysis using context-aware normalization of social media informal text. Applied Sciences (Switzerland). https://doi.org/10.3390/app11178172
Kuangyu, C. (2023). Sentiment prediction based on neural network. Applied and Computational Engineering. https://doi.org/10.54254/2755-2721/5/20230583
Manullang, O., Prianto, C., & Harani, N. H. (2023). Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest. Jurnal Ilmiah Informatika. https://doi.org/10.33884/jif.v11i02.7987
Marifatul Azizah, L., Fadillah Umayah, S., & Fajar, F. (2018). Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer. Semesta Teknika. https://doi.org/10.18196/st.212229
Mishra, J. (2023). Twitter Sentiment Analysis. Interantional Journal Of Scientific Research In Engineering And Management. https://doi.org/10.55041/ijsrem24071
Mohamed Ali, N., El Hamid, M. M. A., & Youssif, A. (2019). SENTIMENT ANALYSIS FOR MOVIES REVIEWS DATASET USING DEEP LEARNING MODELS. International Journal of Data Mining & Knowledge Management Process. https://doi.org/10.5121/ijdkp.2019.9302
Musdalifah, I., & Hadiati Salisah, N. (2022). Cyberdakwah: Tiktok Sebagai Media Baru. KOMUNIDA : Media Komunikasi Dan Dakwah. https://doi.org/10.35905/komunida.v12i2.2733
Naufal, M. F., & Kusuma, S. F. (2022). Analisis Sentimen pada Media Sosial Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat Berbasis Deep Learning. Jurnal Edukasi Dan Penelitian Informatika (JEPIN). https://doi.org/10.26418/jp.v8i1.49951
Pronoza, E., Panicheva, P., Koltsova, O., & Rosso, P. (2021). Detecting ethnicity-targeted hate speech in Russian social media texts. Information Processing and Management. https://doi.org/10.1016/j.ipm.2021.102674
Rachman, F. P. (2021). Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing. Jurnal Teknologi Dan Manajemen Informatika. https://doi.org/10.26905/jtmi.v7i2.6506
Rahman, C., & Supardi, Z. A. I. (2020). Application of Inquiry Learning Model to Improve Students’ Critical Thinking Skills on Effort and Energy Materials in Jogoroto State High School. IPF: Inovasi Pendidikan Fisika. https://doi.org/10.26740/ipf.v9n3.p555-560
Raup, A., Ridwan, W., Khoeriyah, Y., Supiana, S., & Zaqiah, Q. Y. (2022). Deep Learning dan Penerapannya dalam Pembelajaran. JIIP - Jurnal Ilmiah Ilmu Pendidikan. https://doi.org/10.54371/jiip.v5i9.805
Saepudin, S., Widiastuti, S., & Irawan, C. (2023). Sentiment Analysis of Social Media Platform Reviews Using the Naïve Bayes Classifier Algorithm. Jurnal Sisfokom (Sistem Informasi Dan Komputer). https://doi.org/10.32736/sisfokom.v12i2.1650
Sakhawia Kaleem Farogh. (2023). A Comprehensive Evaluation and Comparative Analysis of Data Mining Techniques for Sentiment Analysis in Social Media. International Journal of Advanced Research in Science, Communication and Technology. https://doi.org/10.48175/ijarsct-11609
Sanchana.R, Josephine Ruth Fenitha, Shanmughapriya.M, Bhavani Sree. Sk, & Nithyadevi.S. (2023). Analysis Of Twitter Data Using Machine Learning Algorithms. EPRA International Journal of Research & Development (IJRD). https://doi.org/10.36713/epra12585
Sharma, D., & Sabharwal, M. (2019). Sentiment analysis for social media using SVM classifier of machine learning. International Journal of Innovative Technology and Exploring Engineering. https://doi.org/10.35940/ijitee.I1107.0789S419
Shukla, A., Raval, D., Undavia, J., Vaidya, N., Kant, K., Pandya, S., & Patel, A. (2023). Deep Learning Applications in Sentiment Analysis. Lecture Notes in Electrical Engineering. https://doi.org/10.1007/978-981-19-5936-3_48
Si, H., & Wei, X. (2023). Sentiment Analysis of Social Network Comment Text Based on LSTM and Bert. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126623502924
Subarkah, R. A. (2018). Implementasi Deep Learning Menggunakan Convolutional Neural Network Untuk Klasifikasi Alat Tulis. Nhk技研.
Talaat, A. S. (2023). Sentiment analysis classification system using hybrid BERT models. Journal of Big Data. https://doi.org/10.1186/s40537-023-00781-w
Wang, G. (2023). Analysis of sentiment analysis model based on deep learning. Applied and Computational Engineering. https://doi.org/10.54254/2755-2721/5/20230694
Wang, J., & Xu, R. (2023). Performance analysis of sentiment classification based neural network. Applied and Computational Engineering. https://doi.org/10.54254/2755-2721/5/20230633
Xu, L., & Song, Y. (2023). Comparison of text sentiment analysis based on traditional machine learning and deep learning methods. 2023 4th International Conference on Computer Engineering and Application, ICCEA 2023. https://doi.org/10.1109/ICCEA58433.2023.10135273
Zen Munawar, & Novianti Indah Putri. (2020). Keamanan IoT Dengan Deep Learning dan Teknologi Big Data. TEMATIK. https://doi.org/10.38204/tematik.v7i2.479
Zhao, Y. (2023a). Overview of Deep Learning Methods for Sentiment Analysis. Advances in Engineering Technology Research. https://doi.org/10.56028/aetr.5.1.367.2023
Zhao, Y. (2023b). Performance analysis of sentiment classification based on deep learning methods. Applied and Computational Engineering. https://doi.org/10.54254/2755-2721/5/20230612
Zulfa Qatrunnada, R., Haura Syarifah, T., Leonardo Siahaan, F., & Aulia Putri, A. (2021). Efektivitas Pelatihan “Functional Marketing: Marketing Social Skills 101” Pada Karyawan Perusahaan Asuransi Umum PT. X. Jurnal Intervensi Psikologi (JIP). https://doi.org/10.20885/intervensipsikologi.vol13.iss2.art9
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Prosiding Seminar Nasional Paedagoria telah terindek: