Forecasting Analysis with the Dynamic Systems Approach on Economic Data
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Adebiyi, O. O. (2023). Exploring the impact of predictive analytics on accounting and auditing expertise: A regression analysis of LinkedIn survey data. Available at SSRN , 23(22), 286-305, 4626506. https://dx.doi.org/10.2139/ssrn.4626506
Alexeeva, T. A., Kuznetsov, N. V, & Mokaev, T. N. (2021). Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents. Chaos, Solitons & Fractals, 152, 111365. https://doi.org/10.1016/j.chaos.2021.111365
Azi, A. S., & Dajan, H. J. (2022). Effects of Using Instructional Materials on the Academic Performance of Secondary School Students’ in Economics in Jos-North Local Government Area of Plateau. Kashere Journal of Education, 3(1), 1–7. https://doi.org/10.4314/kje.v3i1.1
Bianchi, D., Bianco, N., & Bernardi, M. (2023). Dynamic Variable Selection in High-Dimensional Predictive Regressions. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4418264
Cheng, S., Quilodrán-Casas, C., Ouala, S., Farchi, A., Liu, C., Tandeo, P., Fablet, R., Lucor, D., Iooss, B., & Brajard, J. (2023). Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA Journal of Automatica Sinica, 10(6), 1361–1387. https://doi.org/10.1109/JAS.2023.123537
Coibion, O., Georgarakos, D., Gorodnichenko, Y., & Van Rooij, M. (2023). How does consumption respond to news about inflation? Field evidence from a randomized control trial. American Economic Journal: Macroeconomics, 15(3), 109–152. https://doi.org/ 10.1257/mac.20200445
Compen, B., Pitthan, F., Schelfhout, W., & De Witte, K. (2022). How to elicit and cease herding behaviour? On the effectiveness of a warning message as a debiasing decision support system. Decision Support Systems, 152, 113652. https://doi.org/10.1016/j.dss.2021.113652
Corazzini, L., Filippin, A., & Vanin, P. (2015). Economic behavior under the influence of alcohol: An experiment on time preferences, risk-taking, and Altruism. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0121530
Corraini, P., Olsen, M., Pedersen, L., Dekkers, O. M., & Vandenbroucke, J. P. (2017). Effect modification, interaction and mediation: An overview of theoretical insights for clinical investigators. Clinical Epidemiology, 9, 331–338. https://doi.org/10.2147/CLEP.S129728
Cuong, D. M. (2022). Forecasting Economic Growth at a Provincial Level in Vietnam : A Systematic Dynamics Model Approach Dự báo tốc độ tăng trưởng kinh tế cấp tỉnh tại Việt Nam : Cách tiếp cận mô hình động lực học hệ thống. 2(5), 22–31. https://js.vnu.edu.vn/EAB/article/view/4756
Dakin, H. A., Leal, J., Briggs, A., Clarke, P., Holman, R. R., & Gray, A. (2020). Accurately reflecting uncertainty when using patient-level simulation models to extrapolate clinical trial data. Medical Decision Making, 40(4), 460–473. https://doi.org/10.1177/0272989X20916442
De Allegri, M., Lohmann, J., Souares, A., Hillebrecht, M., Hamadou, S., Hien, H., Haidara, O., & Robyn, P. J. (2019). Responding to policy makers’ evaluation needs: combining experimental and quasi-experimental approaches to estimate the impact of performance based financing in Burkina Faso. BMC Health Services Research, 19, 1–15. https://doi.org/10.1186/s12913-019-4558-3
Dinardo, J., Matsudaira, J., McCrary, J., & Sanbonmatsu, L. (2021). A practical proactive proposal for dealing with attrition: Alternative approaches and an empirical example. Journal of Labor Economics, 39(S2), S507–S541. https://doi.org/10.1086/712922
Dos Santos, D. V. C., de Soárez, P. C., Cavero, V., Rocha, T. I. U., Aschar, S., Daley, K. L., Claro, H. G., Scotton, G. A., Fernandes, I., & Diez-Canseco, F. (2021). A Mobile Health Intervention for Patients With Depressive Symptoms: Protocol for an Economic Evaluation Alongside Two Randomized Trials in Brazil and Peru. JMIR Research Protocols, 10(10), e26164. https://doi.org/10.2196/26164
Faghidian, S. F., Khashei, M., & Khalilzadeh, M. (2021). Improving intermittent demand forecasting based on data structure. Journal of Engineering Research, 9(1). https://doi.org/10.36909/jer.v9i1.8667
Ginestet, C. E., Emsley, R., & Landau, S. (2020). Stein-like estimators for causal mediation analysis in randomized trials. Statistical Methods in Medical Research, 29(4), 1129–1148. https://doi.org/10.1177/0962280219852388
Gorbunov, D., Fedoseev, S., & Eltsova, M. (2022). System-Dynamic Model for Forecasting Municipal Labour Market Development. 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 296–300. https://doi.org/10.1109/SUMMA57301.2022.9974101
Hitt, M. A., Holmes Jr, R. M., & Arregle, J.-L. (2021). The (COVID-19) pandemic and the new world (dis) order. Journal of World Business, 56(4), 101210. https://doi.org/10.1016/j.jwb.2021.101210
Honti, G., Dörgő, G., & Abonyi, J. (2019). Review and structural analysis of system dynamics models in sustainability science. Journal of Cleaner Production, 240, 118015. https://doi.org/10.1016/j.jclepro.2019.118015
Iterbeke, K., De Witte, K., & Schelfhout, W. (2021). The effects of computer-assisted adaptive instruction and elaborated feedback on learning outcomes. A randomized control trial. Computers in Human Behavior, 120, 106666. https://doi.org/10.1016/j.chb.2020.106666
Kennedy‐Shaffer, L., De Gruttola, V., & Lipsitch, M. (2020). Novel methods for the analysis of stepped wedge cluster randomized trials. Statistics in Medicine, 39(7), 815–844. https://doi.org/10.1002/sim.8451
Kozytskyy, V., Pabyrivska, N., & Beregova, G. (2022). Modeling of Wages and Prices Behavior: System Dynamic Approach. Wseas Transactions on Computers, 21, 44–50. https://doi.org/10.37394/23205.2022.21.6
Kuhlmann, L., & Pauly, M. (2023). A Dynamic Systems Model for an Economic Evaluation of Sales Forecasting Methods. Tehnicki Glasnik, 17(3), 397–404. https://doi.org/10.31803/tg-20230511175500
Kurniasih, J., Abas, Z. A., Asmai, S. A., & Wibowo, A. B. (2023). System Dynamics Approach in Supporting The Achievement of The Sustainable Development on MSMEs: A Collection of Case Studies. International Journal of Advanced Computer Science and Applications, 14(6). https://doi.org/10.14569/IJACSA.2023.01406106
Lawler, K., Vlasova, T., & Moscardini, A. O. (2019). Using system Dynamics in macroeconomics. Вісник Киiвського Нацiонального Унiверситету Iм. Тараса Шевченка. Серiя: Економiка, 3 (204), 34–40. https://doi.org/10.17721/1728-2667.2019/204-3/5
Leventides, J., Melas, E., Poulios, C., & Boufounou, P. (2022). Analysis of chaotic economic models through Koopman operators, EDMD, Takens’ theorem and Machine Learning. Data Science in Finance and Economics, 2(4), 416–436. https://doi.org/10.3934/dsfe.2022021
Li, W., Li, M., Mei, Y., Li, T., & Wang, F. (2020). A big data analytics approach for dynamic feedback warning for complex systems. Complexity, 2020, 1–9. https://doi.org/10.1155/2020/7652496
Lopez-Buenache, G. (2018). Forecast accuracy of small and large scale dynamic factor models in developing economies. Review of Development Economics, 22(3), e63–e78. https://doi.org/10.1111/rode.12392
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57(2), 123–146. https://doi.org/10.1109/TPC.2014.2312452
Moggia, D., Lutz, W., Arndt, A., & Feixas, G. (2020). Patterns of change and their relationship to outcome and follow-up in group and individual psychotherapy for depression. Journal of Consulting and Clinical Psychology, 88(8), 757–773. https://doi.org/10.1037/ccp0000562
Moroz, Y., Galaburda, M., Kudinovа, A., & Galeta, P. (2023). DYNAMICS AND METHODOLOGICAL ASPECTS OF ECONOMIC TRANSFORMATION. Financial & Credit Activity: Problems of Theory & Practice, 1(48). 10.55643/fcaptp.1.48.2023.3954
Munch, S. B., Rogers, T. L., & Sugihara, G. (2023). Recent developments in empirical dynamic modelling. Methods in Ecology and Evolution, 14(3), 732–745. https://doi.org/10.1111/2041-210X.13983
Orlova, E. V. (2022). Technique for Data Analysis and Modeling in Economics, Finance and Business Using Machine Learning Methods. 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 369–374. https://doi.org/10.1109/SUMMA57301.2022.9973885
Osadchii, V. V, Amirova, E. F., Zolkin, A. L., Kalyakina, I. M., & Giniyatullina, D. R. (2022). Economic Dynamics As A System. European Proceedings of Social and Behavioural Sciences. 126(1), 111-145. https://doi.org/10.15405/epsbs.2022.06.80
Outhwaite, L. A., Gulliford, A., & Pitchford, N. J. (2020). A new methodological approach for evaluating the impact of educational intervention implementation on learning outcomes. International Journal of Research & Method in Education, 43(3), 225–242. https://doi.org/10.1080/1743727X.2019.1657081
Pantyeyev, R. L., Timoshchuk, O. L., Huskova, V. H., & Bidyuk, P. I. (2021). Data Filtering Techniques in Decision Support Systems. KPI Science News, 1, 16–31. https://doi.org/10.20535/kpisn.2021.1.231205
Pereira-Pinto, F. H. I., & Savi, M. A. (2020). Complex dynamics of multi-regional economic interactions. Nonlinear Dynamics, 102(2), 1151–1171. https://doi.org/10.1007/s11071-020-05658-8
Perugachi-Diaz, Y., & Knapik, B. (2017). Correlation in linear regression. Vrije Universiteit Amsterdam Research Paper. https://vu-business-analytics.github.io/internship-office/papers/paper-perugachi-diaz.pdf
Pourmohammad Azizi, S., Neisy, A., & Ahmad Waloo, S. (2023). A Dynamical Systems Approach to Machine Learning. International Journal of Computational Methods, , 20(9), 2350007. https://doi.org/10.1142/S021987622350007X
Ramanathan, U. (2014). Performance of supply chain collaboration - A simulation study. Expert Systems with Applications, 41(1), 210–220. https://doi.org/10.1016/j.eswa.2013.07.022
Ramírez Sánchez, J. C., & García de la Sienra, A. (2020). The complicated pairing between dynamic systems techniques and economics. Investigación Económica, 79(314), 28–50. https://doi.org/10.22201/fe.01851667p.2020.314.76042
Ranstam, J., & Cook, J. A. (2016). Causal relationship and confounding in statistical models. Journal of British Surgery, 103(11), 1445–1446. https://doi.org/10.1002/bjs.10241
Rennert, L., Heo, M., Litwin, A. H., & De Gruttola, V. (2020). Accounting for external factors and early intervention adoption in the design and analysis of stepped-wedge designs: Application to a proposed study design to reduce opioid-related mortality. MedRxiv, 21(1), 53-68. https://doi.org/10.1101%2F2020.07.26.20162297
Sapankevych, N. I., & Sankar, R. (2019). Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine, 4(2), 24–38. https://doi.org/10.1109/MCI.2009.932254
Scazzieri, R. (2018). Structural dynamics and evolutionary change. Structural Change and Economic Dynamics, 46, 52–58. https://doi.org/10.1016/j.strueco.2018.03.007
Shang, D., Yan, Z., Zhang, L., & Cui, Z. (2023). Digital financial asset price fluctuation forecasting in digital economy era using blockchain information: A reconstructed dynamic-bound Levenberg–Marquardt neural-network approach. Expert Systems with Applications, 228, 120329. https://doi.org/10.1016/j.eswa.2023.120329
Sovilj, S., Tkalec, M., Pripuzic, D., & Kostanjcar, Z. (2023). Modelling National Economic System: A Case of the Croatian Economy. South East European Journal of Economics and Business, 18(1), 115–144. https://doi.org/10.2478/jeb-2023-0009
Tacchella, A., Mazzilli, D., & Pietronero, L. (2018). A dynamical systems approach to gross domestic product forecasting. Nature Physics, 14(8), 861–865. https://doi.org/10.1038/s41567-018-0204-y
Tan, X. (2021). Predictive analysis of economic chaotic time series based on chaotic genetics combined with fuzzy decision algorithm. Complexity, 2021, 1–12. https://doi.org/10.1155/2021/5517502
Todd, A., Cappers, P., Spurlock, C. A., & Jin, L. (2019). Spillover as a cause of bias in baseline evaluation methods for demand response programs. Applied Energy, 250, 344–357. https://doi.org/10.1016/j.apenergy.2019.05.050
Truscott, J. E., Hardwick, R. J., Werkman, M., Saravanakumar, P. K., Manuel, M., Ajjampur, S. S. R., Ásbjörnsdóttir, K. H., Khumbo, K., Witek-McManus, S., & Simwanza, J. (2021). Forecasting the effectiveness of the DeWorm3 trial in interrupting the transmission of soil-transmitted helminths in three study sites in Benin, India and Malawi. Parasites & Vectors, 14(1), 1–13. https://doi.org/10.1186/s13071-020-04572-7
Zhang, D., Wu, P., Wu, C., & Ngai, E. W. T. (2024). Forecasting duty-free shopping demand with multisource data: a deep learning approach. Annals of Operations Research, 1–27. https://doi.org/10.1007/s10479-024-05830-y
Refbacks
- There are currently no refbacks.
------------------
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Proceeding of International Seminar on Student Research in Education, Science, and Technology already indexed: