THE USE OF KAPOK SEED AGRICULTURAL WASTE AS A SOURCE OF NATURAL CORROSION INHIBITOR FOR ALUMINUM 6061

Syarif Hidayatullah, Ahmad Akromul Huda, Suteja Suteja

Abstract


Aluminum 6061 is one of the most widely used materials across various industrial sectors due to its good mechanical properties, lightweight nature, and corrosion resistance. However, in acidic environments, aluminum remains susceptible to corrosion, which can reduce its performance and service life. This study utilizes agricultural waste from kapok seeds (Ceiba pentandra) as an environmentally friendly corrosion inhibitor for Aluminum 6061. The extract was obtained through maceration using ethanol as the solvent and was applied in corrosion tests of Aluminum 6061 in 1 M HCl solution. The evaluation was conducted using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques, along with isothermal adsorption analysis to understand the adsorption mechanism of the inhibitor on the metal surface. The results showed that the kapok seed extract significantly increased polarization resistance and reduced the corrosion rate, achieving a maximum inhibition efficiency of 78.77% at an optimal concentration of 3000 ppm. The inhibitor adsorption followed the Freundlich isotherm model, indicating strong binding interactions between the inhibitor molecules and the aluminum surface. Therefore, kapok seed extract has great potential as an environmentally friendly and cost-effective corrosion inhibitor for aluminum-based industries.

Keywords


Kapok; Inhibitor corrosion; Acid; Freundlich isotherm;

Full Text:

PDF

References


Adesina, O., McNally, S. K., Katz, B., Warner, J., McFadden, M., & Digre, K. (2017). Diffusion-weighted imaging and post-contrast enhancement in differentiating optic neuritis and non-arteritic anterior optic neuropathy. Neuro-Ophthalmology, 13, 1–9. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048625137&partnerID=40&md5=99aaf23cd3b53307ea717aba9012287f

Ansari, K. R., Quraishi, M. A., Singh, A., Ramkumar, S., & Obote, I. B. (2016). Corrosion inhibition of N80 steel in 15% HCl by pyrazolone derivatives: electrochemical, surface and quantum chemical studies. RSC Advances, 6(29), 24130–24141. https://doi.org/10.1039/C5RA25441H

Arellanes-Lozada, P., Díaz-Jiménez, V., Hernández-Cocoletzi, H., Nava, N., Olivares-Xometl, O., & Likhanova, N. V. (2020). Corrosion inhibition properties of iodide ionic liquids for API 5L X52 steel in acid medium. Corrosion Science, 175, 108888. https://doi.org/https://doi.org/10.1016/j.corsci.2020.108888

Arellanes-Lozada, P., Olivares-Xometl, O., Likhanova, N. V, Lijanova, I. V, Vargas-García, J. R., & Hernández-Ramírez, R. E. (2018). Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. Journal of Molecular Liquids, 265, 151–163. https://doi.org/https://doi.org/10.1016/j.molliq.2018.04.153

Carmona-Hernandez, A., Campechano-Lira, C., Espinoza-Vázquez, A., Ramírez-Cano, J. A., Orozco-Cruz, R., & Galván-Martínez, R. (2023). Electrochemical and DFT theoretical evaluation of the Randia monantha Benth extract as an eco-friendly corrosion inhibitor for mild steel in 1 M HCl solution. Journal of the Taiwan Institute of Chemical Engineers, 147, 104913. https://doi.org/https://doi.org/10.1016/j.jtice.2023.104913

Enabulele, D. O., Bamigboye, G. O., Solomon, M. M., & Durodola, B. (2023). Exploration of the Corrosion Inhibition Potential of Cashew Nutshell on Thermo-Mechanically Treated Steel in Seawater. Arabian Journal for Science and Engineering, 48(1), 223–237. https://doi.org/10.1007/s13369-022-06981-5

Fernandes, C. M., Alvarez, L. X., dos Santos, N. E., Maldonado Barrios, A. C., & Ponzio, E. A. (2019). Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses. Corrosion Science, 149, 185–194. https://doi.org/https://doi.org/10.1016/j.corsci.2019.01.019

Gapsari, F., Darmadi, D. B., Setyarini, P. H., Wijaya, H., Madurani, K. A., Juliano, H., Sulaiman, A. M., Hidayatullah, S., Tanji, A., & Hermawan, H. (2023). Analysis of corrosion inhibition of Kleinhovia hospita plant extract aided by quantification of hydrogen evolution using a GLCM/SVM method. International Journal of Hydrogen Energy, 48(41), 15392–15405. https://doi.org/10.1016/j.ijhydene.2023.01.067

Gapsari, F., Setyarini, P. H., Anam, K., Hadisaputra, S., Hidayatullah, S., Purnami, Sulaiman, A. M., & Lai, C. W. (2025). Efficacy of Andrographis paniculata leaf extract as a green corrosion inhibitor for mild steel in concentrated sulfuric acid: Experimental and computational insights. Results in Surfaces and Interfaces, 18. https://doi.org/10.1016/j.rsurfi.2024.100361

Hidayatullah, S., Herlina Sari, N., Akromul Huda, A., & Pradityatama, M. (2025). Protech Biosystems Journal Pemanfaatan Ekstrak limbah biji Labu Sebagai Inhibitor Dalam Mengurangi Terjadinya Korosi Pada Logam Utilization Of Pumpkin Seed Waste Extract As An Inhibitor In Reducing The Corrosion Rate On Metals. 5(1). https://doi.org/10.31764

Hidayatullah, S., Sulaiman, A. M., & Iftitah, E. N. (2024). Durio Zibethinus Extract Performance as Corrosion Inhibitor in Simulated Seawater. Mechanics Exploration and Material Innovation, 1(1), 27–34. https://doi.org/10.21776/ub.memi.2024.001.01.4

Ituen, E., Akaranta, O., & James, A. (2016). Green anticorrosive oilfield chemicals from 5-hydroxytryptophan and synergistic additives for X80 steel surface protection in acidic well treatment fluids. Journal of Molecular Liquids, 224, 408–419. https://doi.org/https://doi.org/10.1016/j.molliq.2016.10.024

Jmiai, A., El Ibrahimi, B., Tara, A., El Issami, S., Jbara, O., & Bazzi, L. (2018). Alginate biopolymer as green corrosion inhibitor for copper in 1 M hydrochloric acid: Experimental and theoretical approaches. Journal of Molecular Structure, 1157, 408–417. https://doi.org/https://doi.org/10.1016/j.molstruc.2017.12.060

Margono, Darmadi, D. B., Gapsari, F., Widodo, T. D., & Kartika, B. M. (2025). Enhanced corrosion resistance of aluminum 6061 alloy using Ti-based thin films and plasma nitriding. JCIS Open, 18. https://doi.org/10.1016/j.jciso.2025.100139

Nayak, A. K., Hasnain, M. S., Pal, K., Banerjee, I., & Pal, D. (2020). Chapter 25 - Gum-based hydrogels in drug delivery. In K. Pal, I. Banerjee, P. Sarkar, D. Kim, W.-P. Deng, N. K. Dubey, & K. Majumder (Eds.), Biopolymer-Based Formulations (pp. 605–645). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-816897-4.00025-4

Olasunkanmi, L. O., Obot, I. B., Kabanda, M. M., & Ebenso, E. E. (2015). Some Quinoxalin-6-yl Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Experimental and Theoretical Studies. J. Phys. Chem. C, 119, 16004.

Palumbo, G., Górny, M., & Banaś, J. (2019). Corrosion Inhibition of Pipeline Carbon Steel (N80) in CO2-Saturated Chloride (0.5 M of KCl) Solution Using Gum Arabic as a Possible Environmentally Friendly Corrosion Inhibitor for Shale Gas Industry. Journal of Materials Engineering and Performance, 28(10), 6458–6470. https://doi.org/10.1007/s11665-019-04379-3

Salcı, A., Yüksel, H., & Solmaz, R. (2022). Experimental studies on the corrosion inhibition performance of 2-(2-aminophenyl)benzimidazole for mild steel protection in HCl solution. Journal of the Taiwan Institute of Chemical Engineers, 134, 104349. https://doi.org/https://doi.org/10.1016/j.jtice.2022.104349

Swathi, P. N., Rasheeda, K., Samshuddin, S., & Alva, V. D. P. (2017). Fatty Acids and its Derivatives as Corrosion Inhibitors for Mild Steel - An Overview. Journal of Asian Scientific Research, 7(8), 301–308. https://doi.org/10.18488/journal.2.2017.78.301.308

Syarif Hidayatullah, Nasmi Herlina Sari, Maharsa Pradityatama, & Suteja. (2025). Efektifitas Perlindungan Korosi Aluminium Menggunakan Inhibitor Ekstrak Labu Kuning : Studi Elektrokimia dan Permukaan. Jurnal Mesin Nusantara, 8(1), 97–108. https://doi.org/10.29407/jmn.v8i1.24651

Tan, B., Fu, A., Guo, L., Ran, Y., Xiong, J., Marzouki, R., & Li, W. (2023). Insight into anti-corrosion mechanism of Dalbergia odorifera leaves extract as a biodegradable inhibitor for X70 steel in sulfuric acid medium. Industrial Crops and Products, 194, 116106. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.116106

Tan, B., Lan, W., Zhang, S., Deng, H., Qiang, Y., Fu, A., Ran, Y., Xiong, J., Marzouki, R., & Li, W. (2022). Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 645, 128892. https://doi.org/https://doi.org/10.1016/j.colsurfa.2022.128892

Zhang, J., Gong, X. L., Yu, H. H., & Du, M. (2011). The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium. Corrosion Science, 53(10), 3324–3330. https://doi.org/10.1016/j.corsci.2011.06.008




DOI: https://doi.org/10.31764/protech.v5i2.35784

Refbacks

  • There are currently no refbacks.


Protech Biosystems Journal is indexing in the following databases:

   

 

Editorial Office: