Performance test of the gripper control system on a robot arm for picking tomatoes
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601
Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2007). Autonomous Fruit Picking Machine: A Robotic Apple Harvester. Springer Tracts in Advanced Robotics, 42. https://doi.org/10.1007/978-3-540-75404-6_51
Chen, K., Li, T., Yan, T., Xie, F., Feng, Q., Zhu, Q., & Zhao, C. (2022). A Soft Gripper Design for Apple Harvesting with Force Feedback and Fruit Slip Detection. Agriculture, 12(11). https://doi.org/10.3390/agriculture12111802
DeSA, U. N. (2015). World population prospects: The 2015 revision, key findings and advance tables. Working PaperNo.
Guang, W., Baraldo, M., & Furlanut, M. (1995). Calculating percentage prediction error: A user’s note. Pharmacological Research, 32(4), 241–248. https://doi.org/https://doi.org/10.1016/S1043-6618(05)80029-5
He, Z., Karkee, M., & Zhang, Q. (2022). Detecting and Localizing Strawberry Centers for Robotic Harvesting in Field Environment. IFAC-PapersOnLine, 55(32), 30–35. https://doi.org/10.1016/j.ifacol.2022.11.110
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004
Lokasari, K. N. (2011). Pengkajian kemasan dalam dan pengisi terhadap mutu buah tomat (Lycopersicon esculentum Mill.) pada kemasan peti kayu selama transportasi.
Navas, E., Fernández, R., Sepúlveda, D., Armada, M., & Gonzalez-De-santos, P. (2021). Soft grippers for automatic crop harvesting: A review. In Sensors (Vol. 21, Issue 8). MDPI AG. https://doi.org/10.3390/s21082689
Paraforos, D. S., Reutemann, M., Sharipov, G., Werner, R., & Griepentrog, H. W. (2017). Total station data assessment using an industrial robotic arm for dynamic 3D in-field positioning with sub-centimetre accuracy. Computers and Electronics in Agriculture, 136, 166–175. https://doi.org/10.1016/j.compag.2017.03.009
Rachmawati, R. (2021). SMART FARMING 4.0 UNTUK MEWUJUDKAN PERTANIAN INDONESIA MAJU, MANDIRI, DAN MODERN. Forum Penelitian Agro Ekonomi, 38, 137. https://doi.org/10.21082/fae.v38n2.2020.137-154
Rizka, G., Nrp, A., Pembimbing, D., Budiman, F., & Kontrol, K. (2017). RANCANG BANGUN LENGAN ROBOT PENJEPIT PCB 3 DOF BERBASIS ARDUINO UNTUK PROSES ETCHING PCB OTOMATIS.
Ruiz-Ruiz, F. J., Ventura, J., Urdiales, C., & Gómez-de-Gabriel, J. M. (2022). Compliant gripper with force estimation for physical human–robot interaction. Mechanism and Machine Theory, 178. https://doi.org/10.1016/j.mechmachtheory.2022.105062
Suwati, Muanah, Ahmad Akromul Huda, & Adi Gunawan. (2022). Analisis ekonomi budidaya tomat di lahan kering dengan teknik irigasi tetes. Jurnal Agrotek UMMAT, 9(3).
Vu, Q., Kuzov, M., & Ronzhin, A. (2018). Hierarchical classification of robotic grippers applied for agricultural object manipulations. MATEC Web of Conferences, 161, 03015.
Wang, G., Yu, Y., & Feng, Q. (2016). Design of End-effector for Tomato Robotic Harvesting. IFAC-PapersOnLine, 49(16), 190–193. https://doi.org/10.1016/j.ifacol.2016.10.035
Zhao, Y., Gong, L., Liu, C., & Huang, Y. (2016). Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse. IFAC-PapersOnLine, 49(16), 161–165. https://doi.org/10.1016/j.ifacol.2016.10.030
DOI: https://doi.org/10.31764/jau.v11i1.20868
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Oki Saputra, Wahyudi Wahyudi, Joko Sumarsono, Diah Ajeng Setiawati, Endang Purnama Dewi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
| |||
|
Alamat Kantor