Probabilistic Forcasting of Stock Prices Using a Hybrid ARIMA-Monte Carlo Simulation Approach
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Bantilan, N. K., Wahyuningsih, M. A., & Rauf, R. A. (2017). Improved Exchange Rate Farmers through Rice Falied Crop Intensification in Tolitoli, Indonesia. Sustainable Agriculture Research, 7(1), 1. https://doi.org/10.5539/sar.v7n1p1
Büyükşahin, Ü. Ç., & Ertekin, Ş. (2019). Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing, 361, 151–163. https://doi.org/10.1016/j.neucom.2019.05.099
Crowder, L. (2022). in the United States: A Collective Case StudyCharacterization and Assessment of Barriers and Facilitators to the Decision-Making Process for Blood and Blood Donor Safety. Doctor of Philosophy in Translational Health Sciences Dissertations. https://hsrc.himmelfarb.gwu.edu/smhs_crl_dissertations/14
Danbatta, S. J., & Varol, A. (2021). Modeling and Forecasting of Tourism Time Series Data using ANN-Fourier Series Model and Monte Carlo Simulation. 9th International Symposium on Digital Forensics and Security, ISDFS 2021. https://doi.org/10.1109/ISDFS52919.2021.9486325
Deina, C., do Amaral Prates, M. H., Alves, C. H. R., Martins, M. S. R., Trojan, F., Stevan, S. L., & Siqueira, H. V. (2022). A methodology for coffee price forecasting based on extreme learning machines. Information Processing in Agriculture, 9(4), 556–565. https://doi.org/10.1016/j.inpa.2021.07.003
Elsaraiti, M., & Merabet, A. (2021). A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed. Energies, 14(20). https://doi.org/10.3390/en14206782
Farida, Y., Hamidah, A., Sari, S. K., & Hakim, L. (2024). Modeling the Farmer Exchange Rate in Indonesia Using the Vector Error Correction Model Method. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(2), 309–322. https://doi.org/10.30812/matrik.v23i2.3407
Ganesan, H., Longsworth, M., & Sutmann, G. (2021). Parallel hybrid Monte Carlo / Molecular Statics for Simulation of Solute Segregation in Solids. Journal of Physics: Conference Series, 1740(1). https://doi.org/10.1088/1742-6596/1740/1/012001
Gunawan, D., & Astika, W. (2022). The Autoregressive Integrated Moving Average (ARIMA) Model for Predicting Jakarta Composite Index. Jurnal Informatika Ekonomi Bisnis, 4(January 2020), 2–7. https://doi.org/10.37034/infeb.v4i1.114
Hanum, N. R. (2024). Implementation of Machine Learning for Stock Price Prediction Using the LSTM Algorithm. 1(1), 31–37.
Iskandar, E., Ulfa, I., Agribisnis, P. S., Pertanian, F., & Kuala, U. S. (2024). Analisis Perbandingan Peluang Pendapatan Petani Berdasarkan Teknik Budidaya Dengan Menggunakan Simulasi Monte Carlo Di Kabupaten Aceh Utara ( Comparative Analysis of Farmers Income Opportunities Based on Cultivatiob Techniques Using Monte Carlo Simulation. 9, 319–330.
Kumila, A., Sholihah, B., Evizia, E., Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764
Lubis, A. R., Nabila, P., Angraini, S., Sandra, Z. A., Efriyantia, L., Kunci, K., & Carlo, M. (2024). Optimisasi Ramalan Penjualan ATK : Simulasi Monte Carlo Untuk Gandria Store. 3(1), 55–70.
Lukman, A. S., Feri Kusnandar, D., Makanan, G. P., Indonesia, M., Ilmu, D., Pangan, T., Pertanian, T., & Bogor, I. P. (2023). Keamanan Pangan untuk Semua Food Safety for All. Jurnal Mutu Pangan, 2(2), 159–164.
Machine, M., Time, L. U., & Imputation, S. (2024). Machine Learning-Based Univariate Time Series Imputation Method for Estimating Missing Values in Non- Stationary Data. 21(1), 307–320. https://doi.org/10.20956/j.v21i1.36468
Nevi kurniawati. (2022). Spatial Direction of Minor Rice Land Based on Land Suitability and SWOT Analysis in Tanasitolo District, Wajo District. Journal of Multidisciplinary Science, 1(3), 170–181. https://doi.org/10.58330/prevenire.v1i3.76
Niako, N., Melgarejo, J. D., Maestre, G. E., & Vatcheva, K. P. (2024). Effects of missing data imputation methods on univariate blood pressure time series data analysis and forecasting with ARIMA and LSTM. In BMC Medical Research Methodology (Vol. 24, Issue 1). https://doi.org/10.1186/s12874-024-02448-3
Nwosu, J., & Ikiensikimama, S. S. (2023). Monte Carlo Simulation to Autoregressive Integrated Moving Average ( MS-ARIMA ) Model for Time Series Modelling and Forecasting : Case Study of Nigerian Forcados Price. June.
Pangestu, R. B., & Primandari, A. H. (2024). Peramalan Nilai Tukar Petani Kota Yogyakarta dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA). Emerging Statistics and Data Science, 2(2), 280–289.
Syahrin, E., Santony, J., & Na’am, J. (2019). Pemodelan Penjualan Produk Herbal Menggunakan Metode Monte Carlo. Jurnal KomtekInfo, 5(3), 33–41. https://doi.org/10.35134/komtekinfo.v5i3.29
Syam, R., Zaki, A., & Basri, M. H. (2019). Prediksi Harga Kontrak Opsi Asia dalam Perdagangan Pasar Saham dengan Menggunakan Metode Monte Carlo. Journal of Mathematics, Computations, and Statistics, 1(1), 31. https://doi.org/10.35580/jmathcos.v1i1.9174
White, P. A., Long, A. S., & Johnson, G. E. (2020). Quantitative Interpretation of Genetic Toxicity Dose-Response Data for Risk Assessment and Regulatory Decision-Making: Current Status and Emerging Priorities. Environmental and Molecular Mutagenesis, 61(1), 66–83. https://doi.org/10.1002/em.22351
Yulianti, S. R., Effendie, A. R., & Susyanto, N. (2024). Improving the Accuracy of Discrepancies in Farmers ’ Purchasing and Selling Index Prediction by Incorporating Weather Factors. 8(3), 994–1011.
Zhang, C., & Zhou, X. (2024). Forecasting value-at-risk of crude oil futures using a hybrid ARIMA-SVR-POT model. Heliyon, 10(1), e23358. https://doi.org/10.1016/j.heliyon.2023.e23358
Refbacks
- There are currently no refbacks.
Committee:
- Dr. Syaharuddin : +62 878-6400-3847
- Dr. Intan Dwi Hastuti : +62 812-1611-9880