Bayesian Network Predictive Model for Regional Inflation: Case Study of East Kalimantan and Rupiah Exchange Rate
Abstract
Abstract: This research is important because fluctuations in inflation and exchange rates have a significant impact on regional economic stability. Therefore, the purpose of this study is to apply the Bayesian Network method in forecasting the next five years of inflation data in East Kalimantan based on actual data from 2015-2024. Data was obtained from the Central Bureau of Statistics and Bank Indonesia, then analyzed using MATLAB software. The results showed that the Bayesian Network model was able to predict the upward trend of inflation from 3.95% in 2025 to 4.30% in 2029, as well as the trend of the exchange rate from Rp15,839.20 to Rp18,021.02. The Mean Absolute Percentage Error (MAPE) value for inflation prediction is 29.34%, while for the exchange rate is 6.27%. The implications of the results of this study indicate that the Bayesian Network model is more accurate in predicting exchange rates than inflation, and can be used as a tool for regional economic policy planning to maintain price stability and currency value.
Keywords
Full Text:
PDFReferences
Wong, K., Wibawa, A. P., Pakpahan, H. S., Prafanto, A., & Setyadi, H. J. (2019).Prediksi tingkat inflasi dengan menggunakan metode backpropagation neural network. J-SAKTI (Jurnal Sains, Aplikasi, Komputasi dan Teknologi Informasi), 1(2), 8–13.
Hayati, F. N., Nurlaily, D., & Pusporani, E. (2022). Peramalan data ekspor non migas Provinsi Kalimantan Timur menggunakan univariate time series. J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika, 14(2), 59–66.
Susilowati, I. H., & Rosento, R. (2020). Peramalan nilai tukar kurs IDR terhadap Dollar USD dengan metode Moving Average dan Exponential Smoothing. Jurnal Perspektif, 18(1), 91–98.
Nanlohy, Y. W. A., & Loklomin, S. B. (2023). Model Autoregressive Integrated Moving Average (ARIMA) untuk meramalkan inflasi Indonesia. VARIANCE: Journal of Statistics and Its Applications, 5(2), 201–208.
Sari, D. R. P. (2022). Penerapan Metode Double Exponential Smoothing pada Data Inflasi Bulanan Tahun 2021. Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 10(2), 26–31.
Nurlatifah, E., Fahrudin, T., & Rochmawati, R. (2023). Hasil perbandingan penerapan metode peramalan dalam menentukan tingkat inflasi pendidikan di Kota Bandung. Jurnal Ilmiah Manajemen, Ekonomi, & Akuntansi (MEA), 7(3), 49–60.
Putra, Y. P., Aradea, A., & Rianto, R. (2021). Pemodelan Bayesian Network untuk menentukan
probabilitas penyebab pelanggaran dalam pertandingan karate kumite. INNOVATICS: International Journal on Innovation in Research of Informatics, 3(2), 54–57.
Aswi, A., & Sukarna, S. (2022). Pemodelan Spasial Bayesian dalam Menentukan Faktor yang Mempengaruhi Kejadian Stunting di Provinsi Sulawesi Selatan. Jurnal Mathematics, Computations, and Statistics (JMathCoS), 5(1), 1–11.
Syaharuddin. (2024). Integration of Bayesian Methods in Machine Learning: A Theoretical and Empirical Review. INSERT: Information System and Emerging Technology Journal, 5(2), 140–149.
Putra, Y. P., Aradea, A., & Rianto, R. (2021). Pemodelan Bayesian Network untuk menentukan probabilitas penyebab pelanggaran dalam pertandingan karate kumite. INNOVATICS: International Journal on Innovation in Research of Informatics, 3(2), 54–57.
Putri, S. R., Suganda, T. G., & Pramana, S. (2021). Penerapan Bayesian Network dalam Memodelkan Kondisi Ekonomi Hijau Indonesia di Era Pandemi Berdasarkan Big Data. Seminar Nasional Official Statistics, 2021(1), 1054–1064.
Refbacks
- There are currently no refbacks.