The Effect of Liquid Superficial Velocity on Two-Phase Air-Water Slug Flow in a Horizontal Pipe Using High-Speed Camera
Abstract
Keywords
Full Text:
PDFReferences
Al-Safran, E. M., Gokcal, B., & Sarica, C. (2013). Investigation and Prediction of High-Viscosity Liquid Effect on Two-Phase Slug Length in Horizontal Pipelines. SPE Production and Operations, 28(3), 296–305. https://doi.org/10.2118/150572-pa
Al-Safran, E., & Shaaban, O. (2024). Prediction of slug length distribution in horizontal large-diameter gas/liquid pipeline systems. Geoenergy Science and Engineering, 240(December 2023), 212985. https://doi.org/10.1016/j.geoen.2024.212985
Baba, Y. D., Aliyu, A. M., Archibong, A. E., Abdulkadir, M., Lao, L., & Yeung, H. (2018). Slug length for high viscosity oil-gas flow in horizontal pipes: Experiments and prediction. Journal of Petroleum Science and Engineering, 165(February), 397–411. https://doi.org/10.1016/j.petrol.2018.02.003
Brill, J. P., Schmidt, Z., Coberly, W. A., Herring, J. D., & Moore, D. W. (1981). Analysis of Two-Phase Tests in Large-Diameter Flow Lines in Prudhoe Bay Field. Society of Petroleum Engineers Journal, 21(3), 363–378. https://doi.org/10.2118/8305-PA
Budiana, E. P., Pranowo, Indarto, & Deendarlianto. (2020). The meshless numerical simulation of Kelvin–Helmholtz instability during the wave growth of liquid–liquid slug flow. Computers and Mathematics with Applications, 80(7), 1810–1838. https://doi.org/10.1016/j.camwa.2020.08.006
Deendarlianto, Andrianto, M., Widyaparaga, A., Dinaryanto, O., Khasani, & Indarto. (2016). CFD Studies on the Gas-Liquid Plug Two-Phase Flow in a Horizontal Pipe. Journal of Petroleum Science and Engineering, 147(2), 779–787. https://doi.org/10.1016/j.petrol.2016.09.019
Deendarlianto, Rahmandhika, A., Widyatama, A., Dinaryanto, O., Widyaparaga, A., & Indarto. (2019). Experimental study on the hydrodynamic behavior of gas-liquid air-water two-phase flow near the transition to slug flow in horizontal pipes. International Journal of Heat and Mass Transfer, 130, 187–203. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.085
Dinaryanto, O., Prayitno, Y. A. K., Majid, A. I., Hudaya, A. Z., Nusirwan, Y. A., Widyaparaga, A., … Deendarlianto. (2017). Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe. Experimental Thermal and Fluid Science, 81, 93–108. https://doi.org/10.1016/j.expthermflusci.2016.10.013
Kusumaningsih, H., Indarto, & Deendarlianto. (2025). The effect of flow pattern on the heat transfer performance during the transportation of gas-Newtonian/non-Newtonian liquids two-phase flow in a horizontal microchannel. International Communications in Heat and Mass Transfer, 161(2), 108507. https://doi.org/10.1016/j.icheatmasstransfer.2024.108507
Mandhane, J. M., Gregory, G. A., & Aziz, K. (1974). A flow pattern map for gas—liquid flow in horizontal pipes. International Journal of Multiphase Flow, 1(4), 537–553. https://doi.org/10.1016/0301-9322(74)90006-8
Norris, L. (1982). Correlation of Prudhoe Bay Liquid Slug Lengths and Holdups Including 1981 Large Diameter Flowline Tests. Houston, Texas.
Scott, S. L., Shoham, O., & Brill, J. P. (1989). Prediction of Slug Length in Horizontal, Large-Diameter Pipes. SPE Production Engineering, 4(3), 335–340. https://doi.org/https://doi.org/10.2118/15103-PA
Setyawan, A., Indarto, & Deendarlianto. (2016). The effect of the fluid properties on the wave velocity and wave frequency of gas-liquid annular two-phase flow in a horizontal pipe. Experimental Thermal and Fluid Science, 71, 25–41. https://doi.org/10.1016/j.expthermflusci.2015.10.008
Setyawan, A., Indarto, & Deendarlianto. (2017). Experimental investigations of the circumferential liquid film distribution of air-water annular two-phase flow in a horizontal pipe. Experimental Thermal and Fluid Science, 85, 95–118. https://doi.org/10.1016/j.expthermflusci.2017.02.026
Shaaban, O. M., & Al-Safran, E. M. (2023). Prediction of slug length for high-viscosity oil in gas/liquid horizontal and slightly inclined pipe flows. Geoenergy Science and Engineering, 221(November 2022), 211348. https://doi.org/10.1016/j.geoen.2022.211348
Wang, S. (2012). Experiments and Model Development for High-Viscosity Oil/Water/Gas Horizontal and Upward Vertical Pipe Flows. The University of Tulsa.
Widyatama, A., Dinaryanto, O., Indarto, & Deendarlianto. (2018). The development of image processing technique to study the interfacial behavior of air-water slug two-phase flow in horizontal pipes. Flow Measurement and Instrumentation, 59(November 2016), 168–180. https://doi.org/10.1016/j.flowmeasinst.2017.12.015
Wijayanta, S., Deendarlianto, Indarto, Prasetyo, A., & Hudaya, A. Z. (2023). The effect of the liquid physical properties on the wave frequency and wave velocity of co-current gas-liquid stratified two-phase flow in a horizontal pipe. International Journal of Multiphase Flow, 158(2), 104300. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104300
Wijayanta, S., Indarto, Deendarlianto, Catrawedarma, I. G. N. B., & Hudaya, A. Z. (2022). Statistical characterization of the interfacial behavior of the sub-regimes in gas-liquid stratified two-phase flow in a horizontal pipe. Flow Measurement and Instrumentation, 83(2), 102107. https://doi.org/10.1016/j.flowmeasinst.2021.102107
Yeoh, G. H., & Joshi, J. B. (2023). Handbook of Multiphase Flow Science and Technology. Singapore: Springer Nature Singapore Pte Ltd. https://doi.org/https://doi.org/10.1007/978-981-287-092-6
Zheng, D., Che, D., & Liu, Y. (2008). Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline. Corrosion Science, 50(11), 3005–3020. https://doi.org/10.1016/j.corsci.2008.08.006
Refbacks
- There are currently no refbacks.
------------------
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Proceeding of International Seminar on Student Research in Education, Science, and Technology already indexed: