Comparative Analysis of Halley and Hybrid Methods for Numerically Solving the Roots of Non-Linear Equations
Abstract
Abstract: Finding the roots of nonlinear equations is a fundamental problem in numerical analysis with wide applications in engineering, science, and applied mathematics. The purpose of this study is to conduct a comparative analysis between Halley's method and a selected hybrid method for numerically solving the roots of nonlinear equations. Halley's method is a third-order iterative technique known for its fast convergence when provided with a good initial guess. On the other hand, hybrid methods are designed to combine the strengths of multiple numerical algorithms to enhance accuracy, stability, and robustness against different function characteristics. This study employs four test functions—polynomial, trigonometric, exponential, and logarithmic—to evaluate the performance of both methods in terms of convergence speed, computational efficiency, and sensitivity to initial guesses. The results indicate that Halley's method performs better in terms of speed under ideal conditions, while the hybrid method is more reliable in handling diverse nonlinear behaviors. Therefore, the appropriate method selection should consider both the nature of the function and the need for speed or stability in the computation.
Keywords
Full Text:
PDFReferences
Amri, K., Nasution, M. L., & Sriningsih, R. (2021). Penentuan Akar Persamaan Tak Linier Menggunakan Metode Prediktor-Korektor Halley. Journal of Mathematics UNP, 4(2),29-33.
https://ejournal.unp.ac.id/students/index.php/mat/article/view/11558%0Ahttps://e journal.unp.ac.id/students/index.php/mat/article/download/11558/4628
Arruda, R. R. T. (2024). Kosmovisi dan Realitas. https://philpapers.org/archive/THOCDR
-5.pdf
Darmawan, R. N., & Zazilah, A. (2019). Perbandingan Metode Halley dan Olver dalam Penentuan Akar-akar Penyelesaian Polinomial Wilkinson. Jurna lTeori Dan Aplikasi Matematika (JTAM), 3(2) ,93-97.
https://doi.org/https://doi.org/10.31764/jtam.v3i2.992
Fauzan, & Arifin, F. (2017). Hybrid Learning sebagai Alternatif Model Pembelajaran.
Seminar Nasional Profesionalisme Guru Di Era Digital, September, 244-252. https://www.researchgate.net/publication/344361017_Hybrid_Learning_sebagai_
AI ternatif_Model_Pembelajaran_Fauzan_Fatkhul_Arifin.
Mandailina. (2020). Wilkinson Polynomials: Accuracy Analysis Based on Numerical Methods of the Taylor Series Derivative. Desimal: Jurnal Matematika, 3(2), 155-160. https://doi.org/10.24042/djm.v3i2.6134.
Putri, M., & Syaharuddin, S. (2019). Implementations of Open and Closed Method Numerically: A Non-linear Equations Solution Convergence Test. IJECA (International Journal of Education and Curriculum Application), 2(2), 1. https://doi.org/10.31764/ijeca.v2i2 2041.
Qisty. (2022). Simulasi Dan Solusi Persamaan Non-Linier. Seminar Nasional Pendidikan. Inovasi Pendidikan Di Era Society 5.0, 659-664.
Raenagus, F. (2021). Comparison Of Newton Rapshon, Secant-Midpoint Newton and Halley Methods In Solving Nonlinear Equations. In Repository. Uin-Suska.Ac.ld. http://repository.uin-suska.ac.id/id/eprint/45670%0A
Salwa. (2022). Perbandingan Metode Newton Midpoint Halley, Metode Olver dan Metode Chabysave Dalam Penyelesaian Akar-Akar Persamaan Non-Linear. Indonesian Journal of Engineering (IJE), 3(1), 1-15.
Salwa, H. Y., Syaharuddin, S., Sulistina, L., &… (2022). Perbandingan Metode Newton Midpoint Halley, Metode Olver dan Metode Chabysave Dalam Penyelesaian Akar-Akar Persamaan Non-Linear. Indonesian Journal of Engineering (IJE), 3(1), 1-15.https://unu-ntb.e-journal.id/ije/article/view/297%0Ahttps://unu-ntb.e-journal.id/ije/article/download/297/196
Wigati, J. (2020). Solusi Numerik Persamaan Non-Linier Dengan Metode Bisection Dan Regula Falsi. Jurnal Teknologi Terapan: G-Tech, 1(1), 5-17. https://doi.org/10.33379/gtech.v1i1.262
https://www.researchgate.net/publication/344361017_Hybrid_Learning_sebagai_Altern atif_Model_Pembelajaran_Fauzan_Fatkhul_Arifin
Arruda, R. R. T. (2024), Kosmovisi dan Realitas. https://philpapers.org/archive/THOCDR -5.pdf
Darmawan, R. N., & Zazilah, A.. (2019). Perbandingan Metode Halley dan Olver dalam Penentuan Akar-akar Penyelesaian Polinomial Wilkinson. Jurnal Teori Dan AplikasiMatematika(JTAM),3(2),93-97. https://doi.org/https://doi.org/10.31764/jtam.v312.992
Fauzan, & Arifin, F. (2017). Hybrid Learning sebagai Alternatif Model Pembelajaran. Seminar Nasional Profesionalisme Guru Di Era Digital, September, 244-25291 LaporanTugasDasarDasarPermogramanhttps://www.researchgate.net/publication/344361017_Hybrid_Learning_sebagai_Alternatif_Model_Pembelajaran Fauzan Fatkhul Arifin
Mandailina. (2020), Wilkinson Polynomials: Accuracy Analysis Based on Numerical Methods of the Taylor Series Derivative. Desimal: Jurnal Matematika, 3(2),155-160. https://doi.org/10.24042/djm.v3i2.6134
Refbacks
- There are currently no refbacks.
------------------
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Proceeding of International Seminar on Student Research in Education, Science, and Technology already indexed: