Kajian Isoterm Adsorpsi Metilen Biru pada Biochar Kulit Sagu (Metroxylon sagu)

Henny Amelia, Rizki Fitria, Sunardi Sunardi

Abstract


Abstract: Sago bark biomass waste was modified into biochar through pyrolysis with temperature variations of 500 ℃, 600 ℃ and 700 ℃ for 2 hours to increase the adsorption capability. This research aims is to know the adsorption isotherm model of methylene blue on sago bark biochar. The results showed that the adsorption capability of biochar increased comparing to the adsorption capability sago bark without pyrolysis process dan reached optimum adsorption condition at pH 9 for 10 minutes. The results of the analysis show that the adsorption of methylene blue on biochar is closer to the Freundlich isotherms model than to the Langmuir isotherm model. The adsorption capacity of methylene blue on pyrolysis biochar at temperature of 500 ℃, 600 ℃, and 700 ℃ respectively were 45,86; 46,22 and 46,90 mg/g.


Abstrak: Limbah biomassa kulit sagu dimodifikasi menjadi biochar melalui pirolisis dengan variasi suhu 500 ℃, 600 ℃, dan 700 ℃ selama 2 jam untuk memperbaiki kemampuan adsorpsinya. Penelitian ini bertujuan untuk mengetahui pola isoterm adsorpsi metilen biru pada biochar kulit sagu. Hasil penelitian menunjukkan bahwa kemampuan adsorpsi biochar terhadap metilen biru meningkat dibandingkan adsorpsi sebelum proses pirolisis dan mencapai kondisi optimum adsorpsi pada pH 9 selama 10 menit. Hasil analisis menunjukkan bahwa adsorpsi metilen biru pada biochar lebih mendekati model isoterm Freundlich dibanding model isoterm Langmuir. Kapasitas adsorpsi metilen biru pada biochar hasil pirolisis pada suhu 500 ℃, 600 ℃, dan 700 ℃ berturut-turut sebesar 45,86; 46,22 dan 46,90 mg/g.


Keywords


biochar; sago bark; adsorption; methylene blue; pyrolisis

Full Text:

PDF

References


Aktar, J. (2021). Batch Adsorption Process in Water Treatment. Intelligent Environmental Data Monitoring for Pollution Management, 1-24.

Alam, S., Khan, M. S., Bibi, W., Zekker, I., Burlakovs, J., Ghangrekar, M. M., Bhowmick, G. D., Kallistova, A., Pimenov, N., & Zahoor, M. (2021). Preparation of Activated Carbon From the Wood of Paulownia tomentosa as an Efficient Adsorbent For the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water, 1(13), 1452-1453.

Chopra, I., & Singh, S. B. (2020). Kinetics and Equilibrium Study for Adsorptive Removal of Cationic Dye Using Agricultural Waste-raw and Modified Cob Husk. International Journal of Environmental Analytical Chemistry, 1-22.

Ehara, H., Toyoda, Y., Johnson, D. V., & Okazaki, M. (2018). Sago Palm–Multiple Contributions to Food Security and Sustainable Livelihoods. Singapore: Springer Nature.

Guimaraes, T., Luciano, V. A., Silva, M. S. V., Teixeira, A. P. C., Costa, M. M., & Lopes, R. P. (2022). Biochar-iron composites: an efficient material for dyes removal. Environmental Nanotechnology, Monitoring & Management, 44(17), 3310-3322.

Gulec, F., Williams, O., Kostas, E. T., Samson, A., Stevens, L. A., & Lester, E. (2022). Fuel, 330, 1-15.

Jin, Y., Zhang, M., Jin, Z., Wang, G., Li, R., Zhang, X. U., Liu, X., Qu, J., & Wang, H. (2021). Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu (II) ions from aqueous solustion. Environmental Research, 196, 110-323.

Khuluk, R. H., & Rahmat, A. (2019). Indonesian Journal of Science & Technology Removal of Methylene Blue by Adsorption onto Activated Carbon From Coconut Shell (Cocous Nucifera L.), 4(2), 229-240.

Kuntari & Febi, I. F. (2018). Utilization of bamboo leaves Wastes for methylene blue dye adsorption. AIP Conference Proceedings, 2026(020062), 1-8.

Mousavi, S. M., Hashemi, S. A., Esmaeili, H., Amani, A. M., & Mojoudi, F. (2018). Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni(II). Acta Chimica Slovenica, 65: 750-756.

Mustaqiman, A. N., Wirosoedarmo, R., Suharto, B., Ilham, A., & Suwito, H. (2021). Pengaruh biochar sekam padi dan tongkol jagung terhadap penurunan logam Fe. Jurnal Envirotek, 13(2), 1-9.

Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., Li, X., Zhang, K., & Zhu, T. (2017). Removal of azo dye in an up-flow membraneless bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal, 326(5), 454-461.

Quedhrhiri, A., Himi, M. A., Youbi, B., Lghazi, Y., Bahar, J., Haimer, C. E., Aynaou, A., & Bimaghra, I. (2022). Biochar material derived from natural waste with superior dye adsorption performance. Materials, 1-9.

Sahoo, T. R., & Prelot, B. (2020). Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. Micro and Nano Technologies, 161-222.

Siruru, H., Syafii, W., Wistara, I. N. J., & Pari, G. (2019). Characteristics of Metroxylon rumphii (pith and bark waste) from Seram Island, Maluku, Indonesia. Biodiversitas, 20(12), 3517-3526.

Sonwani, R. K., Swain, G., Giri, B. S., Singh, R. S. (2020). Biodegradation of Congo red dye in a moving bed biofilm reactor: performance evaluation and kinetic modeling. Bioresource Technology, 302(10), 122-811.

Tahad, A., & Sanjaya, A. S. (2017). Isotherm Freundlich, kinetics model and definition rate adsorption of Fe with activated carbon from coffe waste. Jurnal Chemurgy, 1(2), 13-21.

Wijayanti, I. E., & Kurniawati, E. (2019). Studi kinetika adsorpsi isoterm persamaan Langmuir dan Freundlich pada abu gosok sebagai adsorben. Jurnal Kimia dan Pendidikan, 4(2), 175-184.

Zhu, G., Xing, X., Wang, J., & Zhang, X. (2017). Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived acitvated carbon. Journal of Materials Science, 52(13), 7664-7676.

Zhue, Y., Yi, B., Yuan, Q., Wu, Y., Wang, M., & Yan, S. (2018). Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar. RSC Advances, 8(36), 19917-19929.




DOI: https://doi.org/10.31764/justek.v6i1.13746

Refbacks

  • There are currently no refbacks.


JUSTEK Official: