Rancang Bangun Alat Pengukur Tinggi dan Berat Badan Secara Wireless Untuk Menentukan Status Gizi

Nadif Adhi Wibowo, Imam Tri Harsoyo, Pramesti Kusumaningtyas, Christina Ary Yuniarti, Muhammad Rofii

Abstract


Nutritional status is a key indicator in assessing individual health that can be determined through anthropometric measurements, particularly height and weight. This study uses a design approach that aims to design and implement a wireless system for measuring nutritional status based on Body Mass Index (BMI) using a TOF400C sensor and a Load Cell controlled by an ESP32 microcontroller. The TOF400C sensor measures height based on the Time-of-Flight principle of infrared light, while the Load Cell measures weight with the HX711 module. Data from both sensors is processed by the ESP32 to calculate BMI and categorize nutritional status according to WHO standards. Test results on 10 adult subjects showed an accuracy of 99.6% for the height measuring device and 98.3% for the weight measuring device compared to standard devices, as well as real-time results displayed on OLED and TFT screens. This system is expected to be a practical and efficient solution for digital nutritional status monitoring.


Keywords


Body Mass Index; TOF400C sensor; Load Cell; ESP32; Nutritional status monitoring

Full Text:

PDF

References


Bezerra, G. M. F., Feitosa, E. S. de L., Catunda, J. G. V., Graça, C. N. S., Aquino, P. L. de, Neto, A. G. B., & Junior, G. B. da S. (2022). Telemedicine Application and Assessment During the COVID-19 Pandemic. Stud Health Technol Inform, Jun 6(290), 854–857.

Centers for Disease Control and Prevention. (2022). About Adult BMI. https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html

Darwito, P. A., Raditya, M., Sa’diyah, H., & Cikadiarta, A. (2019). Comparative Study of Burst And Beams Types Ultrasonic Sensor For Distance Measurements. 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA).

Dell’Isola, G. B., Cosentini, E., Canale, L., Ficco, Gi., & Dell’Isola, M. (2021). Noncontact Body Temperature Measurement: Uncertainty Evaluation and Screening Decision Rule to Prevent the Spread of COVID-19. Sensor2, 21(2), 346.

He, Y., Liang, B., Zou, Y., He, J., & Yang, J. (2017). Depth errors analysis and correction for time-of-flight (ToF) cameras. Sensors (Switzerland), 17(1). https://doi.org/10.3390/s17010092

Hercog, D., Lerher, T., Truntič, M., & Težak, O. (2023). Design and Implementation of ESP32-Based IoT Devices. Sensors, 23(15). https://doi.org/10.3390/s23156739

Hutama, M. A. S. (2021). Rancang Bangun Alat Ukur Tinggi dan Berat Badan dengan Informasi BMI Menggunakan Sensor VL53L0X dan Load Cell. Institut Teknologi Dirgantara Adisutjipto.

Jeyakumar, V., Nirmala, K., & Sarate, S. G. (2022). Chapter 5 - Non-contact measurement system for COVID-19 vital signs to aid mass screening—An alternate approach. Cyber-Physical Systems, 75–92.

Kemenkes RI. (2018). Riset Kesehatan Dasar Tahun 2018. Badan Penelitian dan Pengembangan Kesehatan.

Kemenpora RI. (2022). Pedoman Antropometri. Kemenpora RI.

Lestari, P. I. (2024). Efektivitas Edukasi Gizi dengan Media Pembelajaran Interaktif Berbasis Android terhadap Peningkatan Pengetahuan tentang Makanan Jajanan Sehat Pada Siswa MIN 1 Jakarta. 4, 90–101.

Luthfan, M., & Yendri, D. (2018). Rancang Bangun Alat Pengukur Tinggi Badan dengan Metode Broca Berbasis Mikrokontroler. Universitas Andalas.

Mamdiwar, S. D., Akshith, R., Shakruwala, Z., Chadha, U., Srinivasan, K., & Chang, C. Y. (2021). Recent advances on iot-assisted wearable sensor systems for healthcare monitoring. Biosensors, 11(10), 1–37. https://doi.org/10.3390/bios11100372

Perdana, G. P. (2010). Perancangan program aplikasi pengelolaan data antropometri sebagai pendukung berbasis ergonomi. Universitas Sebelas Maret.

Susanto, A., & Lestari, N. (2021). Development of Anthropometric Measurement System Using Smart Sensors for Healthcare Applications. Journal of Medical Engineering, 45(3), 125–132.

Wan, J., A. A. H. Al-awlaqi, M., Li, M. S., O’Grady, M., Gu, X., Wang, J., & Cao, N. (2018). Wearable IoT enabled real-time health monitoring system. Eurasip Journal on Wireless Communications and Networking, 298(1). https://doi.org/10.1186/s13638-018-1308-x

Weishaupt, I., Mages-Torluoglu, J., Kunze, C., Weidmann, C., Steinhausen, K., & Bailer, A. C. (2022). Mobile Digital Health Intervention to Promote Nutrition and Physical Activity Behaviors Among Long-term Unemployed in Rural Areas: Protocol for a Randomized Controlled Trial. JMIR Res Protoc, 11(11).

WHO. (2023). https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index-(bmi)

Yamada, T., Fujimoto, K., & Kuroda, S. (2020). Accurate body measurement using digital sensor-based systems in clinical settings. Biomedical Sensor Journal, 18(4), 233–24.

Yazhini, A., & Saravanan, K. (2023). IoT based Siddha diagnosis for human health monitoring. Indian Journal of Traditional Knowledge, 22(4), 717–726.

Yunidar, Y., Arnia, F., Melinda, M., & Away, Y. (2024). Pemanfaatan Alat Ukur Status Gizi Otomatis Berbasis Mikrokontroler di Posyandu Meulati Gampong Blang Krueng Kecamatan Baitussalam , Aceh Besar. Jurnal Pengabdian Rekayasa Dan Wirausaha, 1(1), 1–5.




DOI: https://doi.org/10.31764/justek.v8i3.32011

Refbacks

  • There are currently no refbacks.


JUSTEK : Jurnal Sains dan Teknologi sudah terindeks

    

EDITORIAL OFFICE: