Integration of magnus thermodynamic parameters and machine learning algorithms in rainfall prediction

Ayu Aprilia, Hanifah Zakiya, Gurum Ahmad Pauzi, Amir Supriyanto, Syafriadi Syafriadi

Abstract


Atmospheric physics is very useful in predicting rainfall, particularly for analyzing air saturation conditions as a prerequisite for condensation. This study aims to model rainfall prediction using thermodynamic parameters, namely relative humidity (RH) and dew point temperature difference (ΔT). These parameters were collected from BMKG Lampung meteorological data (2022–2024) and processed using the Magnus equation. ΔT is important as a sensitive indicator of air unsaturation. The data were statistically analyzed and modeled using a Gradient Boosting Classifier. The results obtained indicate a strong correlation between RH and ΔT and rainfall events (point-biserial correlation of 0.475). Furthermore, ΔT during rainfall is lower (average 2.87°C) and stable, indicating near-saturation conditions. During the evaluation stage, the model achieved 76% accuracy and 84% recall during rainfall. The model's good performance proves the effectiveness of physical parameters as predictive features. Finally, the model was implemented in a Flask-based web application for practical accessibility.


Keywords


atmospheric; dew point; magnus equations; rain prediction; gradient boosting.

Full Text:

PDF

References


Alduchov, A., & Eskridge, R. (1988). Improved Magnus’ Form Approcimation of Saturation Vapor Pressure. https://doi.org/https://www.osti.gov/servlets/purl/548871〈=en

Andrews, D. G. . (2010). An Introduction to Atmospheric Physics. Cambridge University Press.

Aprilia, A., Wahidin, A. B., & Abdurrahman, A. F. (2025). Integration of Machine Learning and NASA POWER Dataset for Predicting Coffee Production in Lampung. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 22(1), 44. https://doi.org/10.20527/flux.v22i1.20980

Aprilia, A., Wahidin, A. B., & Syafriadi. (2025). Seismic Activity Analysis in Indonesia: Integrating Machine Learning, Geospatial Data, and Environmental Factors for Risk Assessment. JPF (Jurnal Pendidikan Fisika) Universitas Islam Negeri Alauddin Makassar, 13(1), 12–26. https://doi.org/10.24252/jpf.v13i1.54081

Arnah Ritonga, Asni Al Amini, Livia Mutianda, Riamonda Singarimbun, Aiman Hidayat Baeha, Glensius Rayhane Pasaribu, & Juanda Arief Darmawan Damanik. (2025). Analisis Probabilitas Hujan Menggunakan Data Historis Dari BMKG Wilayah I Tahun 2013-2015. JURNAL RISET RUMPUN MATEMATIKA DAN ILMU PENGETAHUAN ALAM, 4(1), 01–20. https://doi.org/10.55606/jurrimipa.v4i1.4367

Catursari, S. A. (2024). Analisis Pengaruh Tekanan Udara, Kelembapan Udara, dan Suhu Udara terhadap Curah Hujan di Kota Surabaya [Universitas Islam Negeri Maulana Malik Ibrahim]. https://doi.org/http://etheses.uin-malang.ac.id/65664/1/200604110061.pdf

Chen, P. Y., Chen, C. C., Kang, C., Liu, J. W., & Li, Y. H. (2025). Soil water content prediction across seasons using random forest based on precipitation-related data. Computers and Electronics in Agriculture, 230. https://doi.org/10.1016/j.compag.2024.109802

Halida, I., Sumbri, H., & Dzikrullah, A. A. (2024). Implementasi Uji Mann Whitney Data Pengamatan Automatic Weather Station (AWS) Digi dan Pengamatan Manual di Stasiun Meteorologi Bandar Udara Internasional Juanda Tahun 2021-2022. Emerging Statistics and Data Science Journal, 2(1).

Hikmayanti Handayani, H., Arum Puspita Lestari, S., Cahyana, Y., & Karawang, P. (2025). Evaluasi Kinerja Algoritma Random Forest Dan Gradient Boosting Untuk Klasifikasi Penyakit Jantung. 9(1). https://doi.org/10.31603/komtika.v9i1.13450

Huertas-Abril, C. A., & Palacios-Hidalgo, F. J. (2023). New Possibilities of Artificial Intelligence-Assisted Language Learning (AIALL): Comparing Visions from the East and the West. Education Sciences, 13(12). https://doi.org/10.3390/educsci13121234

Lakshmi, J. V. N. (2018). Machine learning techniques using python for data analysis in performance evaluation. International Journal of Intelligent Systems Technologies and Applications, 17(1/2), 3. https://doi.org/10.1504/ijista.2018.10012853

Markovics, D., & Mayer, M. J. (2022). Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews, 161. https://doi.org/10.1016/j.rser.2022.112364

Ningsih, N., Iskandar, N. A. S., Rizqiyah, S., & Sudriyanto, S. (2024). PREDIKSI CHURN PELANGGAN INDUSTRI TELEKOMUNIKASI MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORK BERBASIS STREAMLIT. JUSTIFY : Jurnal Sistem Informasi Ibrahimy, 3(2), 105–114. https://doi.org/10.35316/justify.v3i2.5544

Prakasa, A., & Utami, F. D. (2019). Sistem Informasi Radar Cuaca Terintegrasi BMKG. Journal of Telecommunication, Electronics, and Control Engineering (JTECE), 1(02), 78–87. https://doi.org/10.20895/jtece.v1i02.89

Schneider, T., O’Gorman, P. A., & Levine, X. J. (2010). Water vapor and the dynamics of climate changes. In Reviews of Geophysics (Vol. 48, Issue 1). https://doi.org/10.1029/2009RG000302

Wang, H., Zhang, J., Chen, L., & Li, D. (2022). Relationship between summer extreme precipitation anomaly in Central Asia and surface sensible heat variation on the Central-Eastern Tibetan Plateau. Climate Dynamics, 59(3–4), 685–700. https://doi.org/10.1007/s00382-022-06148-w

Wang, W., & Hocke, K. (2022). Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau. Remote Sensing, 14(12). https://doi.org/10.3390/rs14122938

Wang, W., Huang, D., Wang, X. G., Liu, Y. R., & Zhou, F. (2011). Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrology and Earth System Sciences, 15(5), 1699–1712. https://doi.org/10.5194/hess-15-1699-2011

Younus Ahmed, S., Gandhidasan, P., & Al-Farayedhi, A. A. (1998). PIPELINE DRYING USING DEHUMIDIFIED AIR WITH LOW DEW POINT TEMPERATURE. In Applied Thermal Engineering (Vol. 18, Issue 5).




DOI: https://doi.org/10.31764/orbita.v11i2.34505

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

______________________________________________________

ORBITA: Jurnal Pendidikan dan Ilmu Fisika

p-ISSN 2460-9587 || e-ISSN 2614-7017

 Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

EDITORIAL OFFICE: