MODEL EPIDEMI DISCRETE-TIME MARKOV CHAINS SUSCEPTIBLE EXPOSED INFECTED SUSCEPTIBLE (DTMC SEIS) PENYAKIT TUBERKULOSIS PADA DUA DAERAH
Abstract
Keywords
Full Text:
PDFReferences
Braurer, F., Chaves, C.C., and Feng, Z. (2019). Mathematical Models in Epidemiology Vol. 32. New York: Springer.
Danusantoso, H. (2021). Buku Saku Ilmu Penyakit Paru. Jakarta: EGC.
Karlin, S. (2014). A First Course in Stochastic Processes. New York: Academic Press.
Khoirudin M.H, Respatiwulan, dan Susanto, I. (2019). Pola Penyebaran Penyakit Malaria Menggunakan Model Discrete Time Markov Chain Susceptible Infected Susceptible (DTMC SIS). Seminar Nasional Sains Dan Entrepreneurship VI Tahun 2019. Semarang.
Kristanti, S. (2013). Model Epidemi Stokastik Susceptible Infected Susceptible (SIS). Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta.
Liu, W., and Zheng, Q. (2015). A Stochastic SIS Epidemic Model Incorporating Media Coverage in A Two Patch Setting. Applied Mathematics and Computation, 262, 160–168.
Maulana, D.C., Utoyo, M.I., Purwati, U.D., and Chukwu, C.W. (2022). Parameter Estimation and Analysis on SIS-SEIS Types Model of Tuberculosis Transmission in East Java Indonesia. Communications in Mathematical Biology and Neuroscience 2022.
Nurarif, A.H. , dan Kusuma, H. (2016). Asuhan Keperawatan Praktis Berdasarkan Penerapan Diagnosa NANDA, NIC, NOC Dalam Berbagai Kasus. Yogyakarta: Mediaction.
Ratti, I. (2018). A Review on Mathematical Modeling of Infectious Diseases. IIOSR Journal of Engineering (IOSRJEN). 08(8), 2278–8719.
Saputra, F.F. (2017). Model Epidemi Discrete Time Markov Chains (DTMC) Susceptible Infected Susceptible (SIS) Satu Penyakit Dua Daerah. Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta.
Setyawan, W. (2015). Model Susceptible Exposed Infected Susceptible (SEIS). Tugas Akhir, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret, Surakarta.
Tewa, J.J., Bowong, S., and Mewoli, B. (2012). Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis. Applied Mathematical Modelling, 36(6), 2466–2485.
Ziyadi, N., and Yakubu, A.-A. (2016). Local and Global Sensitivity Analysis in a Discrete-Time SEIS Epidemic Model. Advances in Dynamical Systems and Applications, 11(1), 15–33.
Refbacks
- There are currently no refbacks.