Meta-Analisis: Tingkat Akurasi Peramalan Menggunakan Metode Neuro-Fuzzy
Abstract
Forecasting is one of the most important elements in decision making. One of the methods used in forecasting is the Neuro-Fuzzy Method, which is a component with different frequencies or an analytical tool commonly used to present data. The purpose of this meta-analysis is to reanalyze the results of research related to forecasting using the neuro-fuzzy method. The data is collected through indexing databases such as Google Scholar. The filtered data is the result of research that contains the value of the amount of data (N), correlation test (r) and classification. Then analyzed using meta-analysis through effect size and standard error to see the summary effect size. The results of data analysis using JASP software show that the Estimate value at the level of forecasting accuracy using the neuro-fuzzy method is 0.974. Which belongs to the high category, there is a classification section called modification and non-modification. The estimate value of the modification is 0.945 and the p-Rank-test value is 0.563, while for non-modification the estimate value is 0.988 and the p-Rank-test value is 0.649, so it is in the high category.
Keywords
Full Text:
PDFReferences
Abdurrahman, I. (2017). Estimasi Radiasi Matahari Per Jam Pada Permukaan Horizontal Dengan Adaptive Neuro Fuzzy Inference System ( Anfis ) ( Studi Kasus Di Surabaya ) Horizontal Surface With Adaptive Neuro Fuzzy Inference System ( Anfis ) ( Case Study in Surabaya ).
Akhirson, A., & Heruseto, B. (2016). Pendekatan Adaptive Neuro Fuzzy Sebagai Alternatif Bagi Bank Indonesia Dalam Menentukan Tingkat Inflasi Di Indonesia. Jurnal Ekonomi Dan Bisnis, 19(2), 309. https://doi.org/10.24914/jeb.v19i2.463
Alexsandrana, Sitorus, S. H., & Midyanti, D. M. (2019). Menggunakan Logika Fuzzy Tsukamoto Berbasis Website ( Studi Kasus Kota Pontianak ). Jurnal Komputer Dan Aplikasi, 07(02), 61–70.
Amani, J., & Moeini, R. (2012). Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network. Scientia Iranica, 19(2), 242–248. https://doi.org/10.1016/j.scient.2012.02.009
Ayuningtyas, P., Triyanto, D., & Rismawan, T. (2016). Prediksi Beban Listrik Pada PT.PLN (PERSERO) Menggunakan Regresi Interval Dengan Neural Fuzzy. Jurnal Coding, Sistem Komputer UNTAN, 04(1), 1–10.
Aziz, M. A. El, Hemdan, A. M., Ewees, A. A., Elhoseny, M., Shehab, A., Hassanien, A. E., & Xiong, S. (2017). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. Proceedings - 2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for Affordable Electrification of Africa, PowerAfrica 2017, 115–120. https://doi.org/10.1109/PowerAfrica.2017.7991209
Bakyani, A. E., Sahebi, H., Ghiasi, M. M., Mirjordavi, N., Esmaeilzadeh, F., Lee, M., & Bahadori, A. (2016). Prediction of CO2-oil molecular diffusion using adaptive neuro-fuzzy inference system and particle swarm optimization technique. Fuel, 181, 178–187. https://doi.org/10.1016/j.fuel.2016.04.097
Bodyanskiy, Y., & Chala, O. (2021). Generalized neo-fuzzy-neuron with membership functions of special type in medical diagnostics. CEUR Workshop Proceedings, 3038, 1–10.
Chang, F. J., Chiang, Y. M., Tsai, M. J., Shieh, M. C., Hsu, K. L., & Sorooshian, S. (2014). Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. Journal of Hydrology, 508, 374–384. https://doi.org/10.1016/j.jhydrol.2013.11.011
Dewi, C., Kartikasari, D. P., & Mursityo, Y. T. (2014). Prediksi Cuaca Pada Data Time Series Menggunakan Adaptive Neuro Fuzzy Inference System (Anfis). Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 1(1), 18–24.
Dewi, C., & Muslikh, M. (2013). Perbandingan Akurasi Backpropagation Neural Network dan ANFIS Untuk Memprediksi Cuaca. Journal of Scientific Modeling & Computation, 1(1), 7–13.
Dixit, A. M., Subba Rao, S. V., Article, O., Choudhary, K., Singh, M., Choudhary, O. P., Pillai, U., Samanta, J. N., Mandal, K., Saravanan, R., Gajbhiye, N. A., Ravi, V., Bhatia, A., Tripathi, T., Singh, S. C. S., Bisht, H., Behl, H. M., Roy, R., Sidhu, O. P., … Helmy, M. (2018). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. Analytical Biochemistry, 11(1), 1–5. http://link.springer.com/10.1007/978-3-319-59379-1
Do, Q. H., & Chen, J. F. (2013). A neuro-fuzzy approach in the classification of students’ academic performance. Computational Intelligence and Neuroscience, 2013. https://doi.org/10.1155/2013/179097
Du, W. L., Ho, D., & Capretz, L. F. (2015). Improving Software Effort Estimation Using Neuro-Fuzzy Model with SEER-SEM. 10(12). http://arxiv.org/abs/1507.06917
Elektro, M. T., Teknik, F., Udayana, U., Pengajar, S., Elektro, T., Teknik, F., Udayana, U., & Jimbaran, K. B. (2013). Peramalan Beban Listrik Jangka Pendek Di Bali Menggunakan Pendekatan Adaptive Neuro-Fuzzy Inference System (Anfis). Majalah Ilmiah Teknologi Elektro, 11(2).
Fattahi, H. (2017). Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods. Journal of Mining & Environment, 8(2), 163–177. https://doi.org/10.22044/jme.2016.637
Fauzan, M. (2020). ANALISIS PERAMALAN HARGA EMAS DUNIA MENGGUNAKAN FUZZY TIME SERIES MODEL CHENG.pdf.
Ge, D., & Zeng, X. J. (2019). A self-evolving fuzzy system which learns dynamic threshold parameter by itself. IEEE Transactions on Fuzzy Systems, 27(8), 1625–1637. https://doi.org/10.1109/TFUZZ.2018.2886154
Ghorbanzadeh, O., Rostamzadeh, H., Blaschke, T., Gholaminia, K., & Aryal, J. (2018). A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping. Natural Hazards, 94(2), 497–517. https://doi.org/10.1007/s11069-018-3449-y
Ghosh, S., Biswas, S., Sarkar, D., & Sarkar, P. P. (2014). A novel Neuro-fuzzy classification technique for data mining. Egyptian Informatics Journal, 15(3), 129–147. https://doi.org/10.1016/j.eij.2014.08.001
Guimarães, A. J., Silva Araujo, V. J., de Campos Souza, P. V., Araujo, V. S., & Rezende, T. S. (2018). Using fuzzy neural networks to the prediction of improvement in expert systems for treatment of immunotherapy. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11238 LNAI, 229–240. https://doi.org/10.1007/978-3-030-03928-8_19
Gupita, S. A. N. (2017). Prediksi Kadar Polutan Menggunakan Adaptive Neouro-Fuzzy Inference System (ANFIS) untuk Pemantauan Kualitas Udara di Kota Surabaya.
Haghiabi, A. H., Parsaie, A., & Ememgholizadeh, S. (2018). Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alexandria Engineering Journal, 57(3), 1773–1782. https://doi.org/10.1016/j.aej.2017.05.005
Hapsari, K. D., Cholissodin, I., & Santoso, E. (2016). Optimasi Radial Basis Function Neural Network Menggunakan Hybrid Particle Swarm Optimization Dan Genetic Algorithm Untuk Peramalan Curah Hujan. DORO: Repository Jurnal …, January. https://www.researchgate.net/profile/Imam-Cholissodin/publication/328852566_Optimasi_Radial_Basis_Function_Neural_Network_Menggunakan_Hybrid_Particle_Swarm_Optimization_Dan_Genetic_Algorithm_Untuk_Peramalan_Curah_Hujan/links/5be68a054585150b2bab9dbb/Optim
Hipni, A., El-shafie, A., Najah, A., Karim, O. A., Hussain, A., & Mukhlisin, M. (2013). Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS). Water Resources Management, 27(10), 3803–3823. https://doi.org/10.1007/s11269-013-0382-4
Holle, K. F. H. (2016). Diagnosis Penyakit Jantung Menggunakan Adaptive Neuro-Fuzzy Inference System (ANFIS). Matics, 8(2), 81. https://doi.org/10.18860/mat.v8i2.3537
Industri, F. T. (2015). MENENTUKAN PRODUKTIVITAS PANEN SAYURAN KUBIS PUTIH ( Brassica oleracea var . capitata ) DI KARANGPLOSO DESIGN OF WEATHER PREDICTION SYSTEM WITH ANFIS METHOD TO DETERMINE THE CROP HARVEST PRODUCTIVITY OF WHITE.
Kaesmetan, Y. R. (2018). DI PROPINSI NUSA TENGGARA TIMUR DENGAN FUZZY INFERENCE SYSTEM ( FIS ). 10, 42–48.
Kalaksita, R. S., & Irhamah, I. (2016). Peramalan Curah Hujan Harian di Stasiun Ahmad Yani Kota Semarang Menggunakan Adaptive Neuro Fuzzy Inference System ( ANFIS ). Jurnail Sains Dan Seni ITS, 5(2), 498–503.
Kumar Chandar, S. (2019). Fusion model of wavelet transform and adaptive neuro fuzzy inference system for stock market prediction. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01224-2
Lee, M. J., Park, I., & Lee, S. (2015). Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea. Environmental Earth Sciences, 74(1), 413–429. https://doi.org/10.1007/s12665-015-4048-9
Lughofer, E. (2021). Improving the robustness of recursive consequent parameters learning in evolving neuro-fuzzy systems. Information Sciences, 545, 555–574. https://doi.org/10.1016/j.ins.2020.09.026
Maiti, S., & Tiwari, R. K. (2014). A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environmental Earth Sciences, 71(7), 3147–3160. https://doi.org/10.1007/s12665-013-2702-7
Mishra, D., & Goyal, P. (2016). Neuro-fuzzy approach to forecast NO2 pollutants addressed to air quality dispersion model over Delhi, India. Aerosol and Air Quality Research, 16(1), 166–174. https://doi.org/10.4209/aaqr.2015.04.0249
Mohammadi, B., Linh, N. T. T., Pham, Q. B., Ahmed, A. N., Vojteková, J., Guan, Y., Abba, S. I., & El-Shafie, A. (2020). Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrological Sciences Journal, 65(10), 1738–1751. https://doi.org/10.1080/02626667.2020.1758703
Muhajirah, A., Safitri, E., Mardiana, T., Hartina, H., & Setiawan, A. (2019). Analisis Tingkat Akurasi Metode Neuro Fuzzy dalam Prediksi Data IPM di NTB. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 58. https://doi.org/10.31764/jtam.v3i1.769
Refbacks
- There are currently no refbacks.