Microencapsulation Technology for Lipase Added Infant Formula for Improving Gastrointestinal Digestion: A Review

Ratna Nurmalita Sari

Abstract


Lipase role in milk lipid digestion is crucial since fat is the common source of infant nutrition. Human milk as the golden standard of infant nutrition contains bile salt-stimulated lipase which plays a significant role in gaining baby’s weight. In achieving the goal of infant formula to mimic human milk, researchers are concerned to add lipase in infant formula called LAIF (lipase-added infant formula). Since lipase is heat labile, microencapsulation is needed as an approach to stabilize lipase by adding in infant formula. This article reviews the possibility of micro-encapsulation for optimizing the lipase addition. Alginate beads encapsulate product from algae which can be used since it is usually used in commercial powder infant formula. Milk proteins also an option since the proteins contain high nutritional values and are categorized as safe materials. In the legumes group, pea protein could be the prospective option since the material has good solubility in water, stability in high temperatures, and good foaming capacity. Microencapsulation technology makes it possible to make longer shef life and improving stability of lipase in infant formula.


Keywords


bssl; infant formula; lipase; microencapsulation

Full Text:

PDF

References


Augustin, M. A., Sanguansri, L., & Bode, O. (2006). Maillard reaction products as encapsulants for fish oil powders. Journal of Food Science, 71(2). https://doi.org/10.1111/j.1365-2621.2006.tb08893.x

Burgain, J., Gaiani, C., Cailliez-Grimal, C., Jeandel, C., & Scher, J. (2013). Encapsulation of Lactobacillus rhamnosus GG in microparticles: Influence of casein to whey protein ratio on bacterial survival during digestion. Innovative Food Science and Emerging Technologies, 19, 233–242. https://doi.org/10.1016/j.ifset.2013.04.012

Casper, C., Hascoet, J. M., Ertl, T., Gadzinowski, J. S., Carnielli, V., Rigo, J., Lapillonne, A., Couce, M. L., Vågerö, M., Palmgren, I., Timdahl, K., & Hernell, O. (2016). Recombinant bile salt-stimulated lipase in preterm infant feeding: A randomized phase 3 study. PLoS ONE, 11(5), 1–15. https://doi.org/10.1371/journal.pone.0156071

Cook, M. T., Tzortzis, G., Charalampopoulos, D., & Khutoryanskiy, V. V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 162(1), 56–67. https://doi.org/10.1016/j.jconrel.2012.06.003

Culbreth, P. E. D. (1996). United States Patent ( 19 ). 19, 106–109.

Donsì, F., Senatore, B., Huang, Q., & Ferrari, G. (2010). Development of novel pea protein-based nanoemulsions for delivery of nutraceuticals. Journal of Agricultural and Food Chemistry, 58(19), 10653–10660. https://doi.org/10.1021/jf101804g

Firm, T. H. E., & Karlf, O. F. (2007). Patent Application Publication ( 10 ) Pub . No .: US 2007 / 0009410 A1. 1(19).

Heidebach, T., Först, P., & Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloids, 23(7), 1670–1677. https://doi.org/10.1016/j.foodhyd.2009.01.006

Hernell, O., & Olivecrona, T. (1974). Human milk lipases II. Bile salt-stimulated lipase. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 369(2), 234–244. https://doi.org/10.1016/0005-2760(74)90254-9

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835. https://doi.org/10.1080/07373930802135972

Kent, R. M., & Doherty, S. B. (2014). Probiotic bacteria in infant formula and follow-up formula: Microencapsulation using milk and pea proteins to improve microbiological quality. Food Research International, 64, 567–576. https://doi.org/10.1016/j.foodres.2014.07.029

Khan, N. H., Korber, D. R., Low, N. H., & Nickerson, M. T. (2013). Development of extrusion-based legume protein isolate-alginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Research International, 54(1), 730–737. https://doi.org/10.1016/j.foodres.2013.08.017

Klemmer, K. J., Korber, D. R., Low, N. H., & Nickerson, M. T. (2011). Pea protein-based capsules for probiotic and prebiotic delivery. International Journal of Food Science and Technology, 46(11), 2248–2256. https://doi.org/10.1111/j.1365-2621.2011.02743.x

Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13(1), 3–13. https://doi.org/10.1016/S0958-6946(02)00155-3

Li, Y., Hu, M., Du, Y., Xiao, H., & McClements, D. J. (2011). Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids, 25(1), 122–130. https://doi.org/10.1016/j.foodhyd.2010.06.003

Livney, Y. D. (2010). Milk proteins as vehicles for bioactives. Current Opinion in Colloid and Interface Science, 15(1–2), 73–83. https://doi.org/10.1016/j.cocis.2009.11.002

Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O., & Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. Journal of Microencapsulation, 24(7), 685–693. https://doi.org/10.1080/02652040701532908

Pereira, A. da S., Diniz, M. M., De Jong, G., Gama Filho, H. S., dos Anjos, M. J., Finotelli, P. V., Fontes-Sant’Ana, G. C., & Amaral, P. F. F. (2019). Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. International Journal of Biological Macromolecules, 139, 621–630. https://doi.org/10.1016/j.ijbiomac.2019.08.009

Wang, C., Specific, P., Wang, C., Freed, L., Characteris, L., & Stone, P. E. (1990). United States Patent ( 19 ) Patent Number : 19.

Zhang, Z., Chen, F., Zhang, R., Deng, Z., & McClements, D. J. (2016). Encapsulation of Pancreatic Lipase in Hydrogel Beads with Self-Regulating Internal pH Microenvironments: Retention of Lipase Activity after Exposure to Gastric Conditions. Journal of Agricultural and Food Chemistry, 64(51), 9616–9623. https://doi.org/10.1021/acs.jafc.6b04644




DOI: https://doi.org/10.31764/jafp.v4i2.27980

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Ratna Nurmalita Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JAFP is indexing in the following databases: