Experimental study on the use of aluminum waste as a heat energy storage medium in laboratory-scale drying equipment

Nanang Apriandi, Avicenna An-Nizhami, Yusuf Dewantoro Herlambang, Rani Raharjanti, Iqo Yovie Rachman, Sigit Suseno, Hilma Khoirunnisa, Atina Nurul Khusna

Abstract


One of the best ways to reduce food loss during harvest is drying. The main challenge in the drying process is reducing energy consumption as a heat source in drying equipment. Integrating thermal energy storage (TES) into drying equipment has proven to be an effective way to enhance energy efficiency in the drying process. This research aims to explore the potential of TES material in the form of aluminium chips sourced from machining waste and integrated into a drying device. The thermal characteristics of the drying system without and with the addition of TES are compared and evaluated under two testing conditions, namely charging and discharging. The results show that the integration of TES in the drying system can reduce the percentage of temperature drop in the drying chamber due to the charging-discharging process by 58.57%, with the average percentage of temperature drop in the drying chamber without and with the addition of TES being 25.56% and 10.59%, respectively. Overall, aluminium chips obtained from machining waste can be used as an alternative TES material that is environmentally friendly, inexpensive, and readily available.


Keywords


aluminum chips; characterization; drying, TES, thermal energy storage

References


Andharia, J. K., Solanki, J. B., & Maiti, S. (2023). Performance evaluation of a mixed-mode solar thermal dryer with black pebble-based sensible heat storage for drying marine products. Journal of Energy Storage, 57. https://doi.org/10.1016/j.est.2022.106186

Apriandi, N., Herlambang, Y. D., Khoryanton, A., Safarudin, Y. M., Baskara, Z. W., & Raharjanti, R. (2023). The Newton Model for Seaweed Drying: An Investigation of a Cabinet Dryer Using Biomass Energy. Eksergi, 19(1). https://jurnal.polines.ac.id/index.php/eksergi

Apriandi, N., Kristiawan, T. A., Herlambang, Y. D., Supandi, S., Abidin, Z., & Wibowo, A. D. (2023). Design and performance test of a cabinet type dryer for drying breadfruit chips: a case study of the Sumber Rejeki Purwosari Farmers Group, Semarang City. Journal of Mechanical Engineering and Applied Technology, 1(3), 29–35.

Apriandi, N., Sumarno. F Gatot, An-Nizhami, A., Luthfiana, N. T. A., Kholifah, N. N., Atohillah, M. K., & Prakoso, R. G. A. (2022). Karakterisasi Alat Pengering Tipe Kabinet Berbahan Bakar Liquefied Petrolium Gas (LPG) Dengan Penambahan Low Cost Material Heat Storage (LCMHS). Jurnal Rekayasa Mesin, 17(2), 281–288. https://jurnal.polines.ac.id/index.php/rekayasa

Bhavsar, H., & Patel, C. M. (2023). Performance analysis of cabinet type solar dryer for ginger drying with & without thermal energy storage material. Materials Today: Proceedings, 73, 595–603. https://doi.org/10.1016/j.matpr.2022.11.280

Cetina-Quiñones, A. J., Arıcı, M., Cisneros-Villalobos, L., & Bassam, A. (2023). Digital twin model and global sensitivity analysis of an indirect type solar dryer with sensible heat storage material: An approach from exergy sustainability indicators under tropical climate conditions. Journal of Energy Storage, 58. https://doi.org/10.1016/j.est.2022.106368

Chaatouf, D., Salhi, M., Raillani, B., Bria, A., Amraqui, S., & Mezrhab, A. (2023). Solar dryer analysis and effectiveness under four seasons with sensible and latent heat storage units. Innovative Food Science and Emerging Technologies, 85. https://doi.org/10.1016/j.ifset.2023.103310

Dutta, P., Das, H., Dutta, P. P., & Kalita, P. (2024). Evaluation of an improved indirect solar dryer for Curcuma Amada without and with stone chips as thermal energy storage: An investigation on kinetics, energy, exergy, quality and economic aspects. Journal of Energy Storage, 79, 110199. https://doi.org/10.1016/j.est.2023.110199

Firdaus, A. (2016). Perancangan dan Analisa Alat Pengering Ikan dengan Memanfaatkan Energi Briket Batubara. Jurnal Teknik Mesin (JTM), 06, 128–136.

Gilago, M. C., Mugi, V. R., & V.P., C. (2023). Performance assessment of passive indirect solar dryer comparing without and with heat storage unit by investigating the drying kinetics of carrot. Energy Nexus, 9. https://doi.org/10.1016/j.nexus.2023.100178

Kalita, N., Muthukumar, P., & Dalal, A. (2024). Performance investigation of a hybrid solar dryer with electric and biogas backup air heaters for chilli drying. Thermal Science and Engineering Progress, 52. https://doi.org/10.1016/j.tsep.2024.102646

Mamengko, A., Khosuma, F. P. T., Sinurat, R., Moningka, G. V., Pangaila, B. Z., & Pomalingo, M. F. (2024). The Application of a Hybrid Fueled Wood Drying Machine to Accelerate The Production Process of Minahasa Traditional Houses. Jurnal Abditechno, 4(1), 33–41.

Mathew, A. A., Thangavel, V., Mandhare, N. A., & Nukulwar, M. R. (2023). Latent and sensible heat thermal storage in a heat pipe-based evacuated tube solar dryer: A comparative performance analysis. Journal of Energy Storage, 57. https://doi.org/10.1016/j.est.2022.106305

Mugi, V. R., Gilago, M. C., Chandramohan, V. P., & Valasingam, S. B. (2024). Experimental evaluation of performance, drying and thermal parameters of guava slabs dried in a forced convection indirect solar dryer without and with thermal energy storage. Renewable Energy, 223. https://doi.org/10.1016/j.renene.2024.120005

Murali, S., Aniesrani Delfiya, D. S., Alfiya, P. V., Samuel, M. P., & Ninan, G. (2023). Development of sensible heat storage based solar hybrid dryer with evacuated tube collector and biomass gasifier for shrimp drying. Solar Energy, 262. https://doi.org/10.1016/j.solener.2023.111836

Sehrawat, R., Sahdev, R. K., Tiwari, S., & Kumar, S. (2023). Performance analysis and environmental feasibility of bifacial photovoltaic thermal dryer with heat storage. Energy Conversion and Management, 288. https://doi.org/10.1016/j.enconman.2023.117150

Sudirman, S., Baliarta, I., Sudana, I., Arsana, M. E., An-Nizhami, A., & Apriandi, N. (2023). Aplikasi Cooling Dehumidification pada Mesin Pengering untuk Mengeringkan Hasil Panen Tanaman Herbal. Jurnal Rekayasa Mesin, 18(1), 37–44. https://jurnal.polines.ac.id/index.php/rekayasa

Tawalbeh, M., Khan, H. A., Al-Othman, A., Almomani, F., & Ajith, S. (2023). A comprehensive review on the recent advances in materials for thermal energy storage applications. International Journal of Thermofluids, 18. https://doi.org/10.1016/j.ijft.2023.100326

Yüksel, C., Öztürk, M., & Çiftçi, E. (2024). Analysis of a novel V-grooved double pass photovoltaic thermal solar dryer including thermal energy storage. Applied Thermal Engineering, 236. https://doi.org/10.1016/j.applthermaleng.2023.121697




DOI: https://doi.org/10.31764/jau.v11i4.26626

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Apriandi, An-Nizhami, Herlambang, Raharjanti, Rachman, Suseno, Khoirunnisa, & Khusna

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

 

   

 


Alamat Kantor