RANCANG BANGUN PENGENDALI IKLIM MIKRO PADA RUMAH TANAMAN BERBASIS MIKROKONTROLER

Diah Ajeng Setiawati, Joko Sumarsono, Asih Priyati, Guyup Mahardhian Dwi Putra, Muhammad Nasarudin

Abstract


Control of temperature and humidity of air in plant houses which is microclimate control is necessary to do for optimal plant growth.  The purpose of this research is to design and test the performance of microclimate control and monitoring systems in plant houses. Research tools and materials include plant houses, Arduino microcontrollers, DHT22 sensors, RTC DS3231, TFT LCD 128×64 12864, DC Pumps, 0.2 mm nozzles, relays, SD card modules, and exhaust fans. The method used is an experimental method of using a water misting system to control the temperature and humidity of the air. From the results obtained, the microclimate control design can work automatically assisted by DHT22 sensors. When the air temperature reaches > 29°C, the active air wasting fan releases hot air. Whereas when air humidity drops to <80%, active air humidifiers increase air humidity.


Keywords


Air humidity; Air temperature; Microclimate; Microcontroller; Plant houses

Full Text:

PDF

References


Arif, C. and Suhardiyanto, H. (2007) ‘Identifikasi Iklim Mikro pada Single-Span Greenhouse Daerah Tropis menggunakan Artificial Neural Network’, Seminar On lntelligent Technology and Its Application. Available at: https://repository.ipb.ac.id/bitstream/handle/123456789/9605/PUBHSD_2007_1.pdf?sequence=1&isAllowed=y.

Astutik, Y. et al. (2019) ‘Remote monitoring systems in greenhouse based on NodeMCU ESP8266 microcontroller and Android’, AIP Conference Proceedings, 2199(December). doi: 10.1063/1.5141286.

Craft, B. (2013) Arduino Projects For Dummies. Chichester (UK): John Wiley & Sons.

Du, Q. et al. (2018) ‘Effects of atmospheric and soil water status on photosynthesis and growth in tomato’, Plant, Soil and Environment, 64(1), pp. 13–19. doi: 10.17221/701/2017-PSE.

Ghanem, M. E. et al. (2020) ‘Seasonal and climatic variation of weighted VPD for transpiration estimation’, European Journal of Agronomy. Elsevier, 113(December 2018), p. 125966. doi: 10.1016/j.eja.2019.125966.

Karmila, R. and Andriani, V. (2019) ‘Pengaruh Temperatur Terhadap Kecepatan Pertumbuhan Kacang Tolo (Vigna sp.)’, STIGMA: Jurnal Matematika dan Ilmu Pengetahuan Alam Unipa, 12(01), pp. 49–53. doi: 10.36456/stigma.vol12.no01.a1861.

Katagiri, F. et al. (2015) ‘Design and construction of an inexpensive homemade plant growth chamber’, PLoS ONE, 10(5), pp. 1–14. doi: 10.1371/journal.pone.0126826.

Monk, S. (2016) ‘Programming Arduino: Getting Started with Sketches, Second Edition’, p. 176.

Romps, D. M. (2014) ‘An analytical model for tropical relative humidity’, Journal of Climate, 27(19), pp. 7432–7449. doi: 10.1175/JCLI-D-14-00255.1.

Saptadi, A. H. (2015) ‘Perbandingan Akurasi Pengukuran Suhu dan Kelembaban Antara Sensor DHT11 dan DHT22 Studi Komparatif pada Platform ATMEL AVR dan Arduino’, Jurnal Informatika,Telekomunikasi dan Elektronika, 6(2). doi: 10.20895/infotel.v6i2.73.

Sariayu, M. V. et al. (2017) ‘Dengan Sistem Aeroponik Berbasis Arduino Uno R3’, Jurnal Teknik Elektro Universitas Tanjungpura.

Shamshiri, R. R. et al. (2018) ‘Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review’, International Agrophysics, 32(2), pp. 287–302. doi: 10.1515/intag-2017-0005.

Shie, C.-L., Tao, W.-K. and Simpson, J. (2006) ‘A note on the relationship between temperature and water vapor over oceans, including sea surface temperature effects’, Advances in Atmospheric Sciences, 23(1), pp. 141–148. doi: 10.1007/s00376-006-0014-5.

Telaumbanua, M., Purwantana, B. and Sutiarso, L. (2014) ‘Rancangbangun Aktuator Pengendali Iklim Mikro di dalam Greenhouse untuk Pertumbuhan Tanaman Sawi (Brassica rapa var.parachinensis L.)’, Agritech: Jurnal Fakultas Teknologi Pertanian UGM, 34(2), pp. 213–222. doi: 10.22146/agritech.9512.

Waluyo, S. et al. (2019) ‘Pengendalian Temperatur dan Kelembaban dalam Kumbung Jamur Tiram (Pleurotus sp) Secara Otomatis Berbasis Mikrokontroler’, agriTECH, 38(3), p. 282. doi: 10.22146/agritech.30068.

Zhang, R. et al. (2019) ‘The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions’, PLoS ONE, 14(7), pp. 1–15. doi: 10.1371/journal.pone.0219209.




DOI: https://doi.org/10.31764/jau.v8i1.4032

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Agrotek Ummat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

 

   

 


Alamat Kantor