SIMULASI PENYELESAIAN TINGKAT ENERGI SISTEM MOLEKUL DALAM PENGARUH POTENSIAL KRATZER DENGAN METODE PARAMETRIK NIKIFOROV-UVAROV

Nani Sunarmi

Abstract


ABSTRAK

Telah dilakukan kajian terhadap potensial Kratzer pada sistem molekul dengan menggunakan metode Parametrik Nikiforov-Uvarov. Penelitian bermaksud mendapatkan persamaan tingkat energi sistem dalam pengaruh potensial Kratzer  dan melakukan simulasi terhadap persamaan tingkat energi tersebut untuk molekul oksigen, iodin, karbon monoksida, nitrogen monoksida.  Penyelesaian tingkat energi sistem diperoleh dengan memisahkan persamaan Schrodinger sistem partikel menjadi 3 bagian yakni  radial, zenithal dan azimuthal. Penyelesaian tingkat energi diperoleh dengan meninjau persamaan Schrodinger sistem partikel bagian radial. Penyelesaian persamaan tingkat energi dilakukan dengan menerapkan metode Parametrik Nikiforov-Uvarov. Penyelesaian terhadap persamaan Schrodinger sistem partikel bagian radial dilakukan dengan mereduksi persamaan menjadi persamaan diferensial tipe hipergeometri.   Komputasi numerik dan simulasi grafik tingkat energi dilakukan dengan menggunakan Matlab. Berdasarkan hasil penelitian diperoleh penyelesaian persamaan tingkat energi bergantung parameter energi disosiasi, panjang ikatan kesetimbangan, bilangan kuantum serta massa molekul.  Molekul iodin memiliki tingkat energi paling rendah dibandingkan molekul oksigen, karbon monoksida, nitrogen monoksida.

 

Kata kunci: tingkat energi; potensial kratzer; metode parametrik nikiforov-uvarov.

 

ABSTRACT

A study of the Kratzer potential in molecular systems has been carried out using the Nikiforov-Uvarov Parametric method. The research aims to obtain the energy level equations of the system under the influence of the Kratzer potential and carry out simulations of these energy level equations for oxygen, iodine, carbon monoxide, nitrogen monoxide molecules. The solution for the energy level of the system is obtained by separating the Schrodinger equation of the particle system into 3 parts, namely radial, zenithal and azimuthal. The solution for energy levels is obtained by considering the Schrodinger equation of the radial section particle system. Solving the energy level equation is done by applying the Nikiforov-Uvarov Parametric method. The solution to the Schrodinger equation of the radial section particle system is carried out by reducing the equation to a hypergeometric type differential equation. Numerical computations and graphical simulations of energy levels are carried out using Matlab. Based on the research results, it was found that the solution to the energy level equation depends on the parameters of dissociation energy, equilibrium bond length, quantum number and molecular mass. Iodine molecule has the lowest energy level compared to oxygen molecules, carbon monoxide, nitrogen monoxide.

 

Keywords: energy level; kratzer potential; nikiforov-uvarov parametric method.


Keywords


energy level; kratzer potential; nikiforov-uvarov parametric method.

Full Text:

PDF

References


Akpan, I. O., Inyang, E. P., & William, E. S. (2021). Approximate solutions of the Schrödinger equation with Hulthén-Hellmann potentials for a quarkonium system. Revista Mexicana de Fisica, 67(3), 482–490. https://doi.org/10.31349/RevMexFis.67.482

Antia, A. D., Okon, I. B., Akankpo, A. O., & Usanga, J. B. (2020). Non-Relativistic Bound State Solutions of Modified Quadratic Yukawa plus <i>q</i>-Deformed Eckart Potential. Journal of Applied Mathematics and Physics, 08(04), 660–671. https://doi.org/10.4236/jamp.2020.84051

Berkdemir, C. (2012). Theoretical Concepts of Quantum Mechanics. In Theoretical Concepts of Quantum Mechanics. InTech. https://doi.org/10.5772/2075

Fitriani, S. N., & Suparmi. (2017). Solusi Persamaan Dirac Dengan Spin Simetri Untuk Potensial Scarf Ii Hiperbolik Terdeformasi-Q Plus Tensor Tipe Coulomb Dengan Menggunakan Metode Nikiforov Uvarov. Kappa Journal, 1(1), 13. https://doi.org/10.29408/kappa.v1i1.407

Ibrahim, N., Okorie, U. S., Sulaiman, N., Rampho, G. J., & Ramantswana, M. (2022). Solutions of the Schrodinger equation of the shifted screened Kratzer potential and its thermodynamic functions using the extended Nikiforov–Uvarov method. Frontiers in Physics, 10(September), 1–12. https://doi.org/10.3389/fphy.2022.988279

Ikhdair, S. M., & Sever, R. (2008). Exact solutions of the modified kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by the nikiforovuvarov method. International Journal of Modern Physics C, 19(2), 221–235. https://doi.org/10.1142/S0129183108012030

Ikot, A. N., Okorie, U., Ngiangia, A. T., Onate, C. A., Edet, C. O., Akpan, I. O., & Amadi, P. O. (2020). Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method. Ecletica Quimica, 45(1), 65–76. https://doi.org/10.26850/1678-4618eqj.v45.1.p65-76

Ita, B. I., Louis, H., & Magu, T. O. (2017). Bound State Solutions of the Klein Gordon Equation with Woods-Saxon Plus Attractive Inversely Quadratic Potential Via Parametric Nikiforov-Uvarov Method. World Scientific News, 74, 280–287.

Karomah, S. A., Jannah, A. R., Aini, N. R., Zumarotin, R., & Sunarmi, N. (2021). Visualisasi Rapat Peluang Posisi Elektron terhadap Sudut pada Atom Deuterium. Newthon-Maxwell Journal of Physics, 2(2), 35–44.

Nikiforov, A. F., & Uvarov, V. B. (1988). Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhauser Verlag Basel.

Okon, I. B., Antia, A. D., Akankpo, A. O., & Essien, I. E. (2020). Eigen-Solutions to Schrodinger Equation with Trigonometric Inversely Quadratic Plus Coulombic Hyperbolic Potential. Physical Science International Journal, 24(3), 61–75. https://doi.org/10.9734/psij/2020/v24i330183

Okon, I. B., Omugbe, E., Antia, A. D., Onate, C. A., Akpabio, L. E., & Osafile, O. E. (2021). Spin and pseudospin solutions to Dirac equation and its thermodynamic properties using hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential. Scientific Reports, 11(1), 1–21. https://doi.org/10.1038/s41598-020-77756-x

Omugbe, E. (2020). Non-relativistic Energy Spectrum of the Deng-Fan Oscillator via the WKB Approximation Method. Asian Journal of Physical and Chemical Sciences, 26–36. https://doi.org/10.9734/ajopacs/2020/v8i130107

Onyenegecha, C. P., Njoku, I. J., Omame, A., Okereke, C. J., & Onyeocha, E. (2021). Dirac equation and thermodynamic properties with the Modified Kratzer potential. Heliyon, 7(9), e08023. https://doi.org/10.1016/j.heliyon.2021.e08023

Purohit, K. R., Parmar, R. H., & Rai, A. K. (2021). Energy and momentum eigenspectrum of the Hulthén-screened cosine Kratzer potential using proper quantization rule and SUSYQM method. Journal of Molecular Modeling, 27(12). https://doi.org/10.1007/s00894-021-04965-0

Rusmini, E., Fauziah, F. A., Arianto, N. F., Izzah, D. H., Jayanti, S. D., Hasanah, R., & Sunarmi, N. (2022). Visualisasi osilator harmonik kuantum dengan polinomial hermitte menggunakan simulasi pemrograman matlab. Jurnal MIPA dan Pembelajarannya, 2(3), 183–189. https://doi.org/10.17977/ um067v2i3p183-189

Setare, M. R., & Karimi, E. (2007). Algebraic approach to the Kratzer potential. Physica Scripta, 75(1), 90–93. https://doi.org/10.1088/0031-8949/75/1/015

Siregar, R. E. (2018). Fisika Kuantum. Universitas Padjajaran.

Sunarmi, N. (2022). Analisis Persamaan Energi Menggunakan Metode Parametrik Nikiforov-Uvarov Untuk Atom Berelektron Tunggal Dengan potensial Hulthen . Jurnal Pendidikan Fisika dan Sains (JPFS), 5(2 SE-), 68–74. https://doi.org/10.52188/jpfs.v5i2.275

Sunarmi, N., Suparmi, S., & Cari, C. (2013). Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov. Indonesian Journal of Applied Physics, 3(2), 169–180. https://doi.org/10.13057/ijap.v3i02.1266

Suparmi, A., Permatahati, L. K., Faniandari, S., Iriani, Y., & Marzuki, A. (2021). Study of Bohr Mottelson Hamiltonian with minimal length effect for Woods-Saxon potential and its thermodynamic properties. Heliyon, 7(5), e06861. https://doi.org/10.1016/j.heliyon.2021.e06861

Sutopo. (2005). Pengantar Fisika Kuantum. In Jurusan Fisika FMIPA UM. Jurusan Fisika FMIPA UM.




DOI: https://doi.org/10.31764/orbita.v8i2.11452

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

______________________________________________________

ORBITA: Jurnal Pendidikan dan Ilmu Fisika

p-ISSN 2460-9587 || e-ISSN 2614-7017

 Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

EDITORIAL OFFICE: