DESAIN BAND PASS FILTER DENGAN FREKUENSI CUT-OFF 1 KHz DAN 100 KHz UNTUK SISTEM ELECTRICAL IMPEDANCE TOMOGRAPHY (EIT)
Abstract
ABSTRAK
Electrical Impedance Tomography (EIT) merupakan teknik pencitraan non-invasif yang merekonstruksi distribusi konduktivitas dari suatu objek. Hasil rekonstruksi citra dengan teknik EIT sangat bergantung pada kemampuan sistem instrumentasinya untuk menghasilkan data yang akurat. Rangkaian filter merupakan salah satu bagian terpenting dalam sistem EIT. Pada penelitian ini telah dirancang dan disimulasikan empat jenis rangkaian band-pass filter orde 4 yang menggunakan koefisien Butterworth, unity gain, dan topologi Sallen-Key dengan frekuensi cut-off 1 kHz dan 100 kHz. Hasil pengujian keempat rangkaian BPF menunjukkan bahwa keempat rangkaian mampu meloloskan sinyal dengan frekuensi antara 1 kHz hingga 100 kHz.
Kata kunci: band-pass filter; electrical Impedance Tomography; frequency.
ABSTRACT
Electrical impedance tomography (EIT) is a low-cost non-invasive imaging technique that reconstructs the conductivity distribution of an object. Image reconstruction results with the EIT technique depend on the instrumentation system's ability to produce accurate data. The filter circuit is one of the most important parts to build EIT system.This research has been designed and simulated four types of 4th-order band-pass filter circuits which are using the Butterworth coefficient, unity gain, and Sallen-Key topology with cut-off frequency 1kHz and 100 kHz.The test results of the four BPF circuits show that circuits are able to pass signals with frequencies between 1 kHz to 100 kHz.
Keywords: band-pass filter; electrical Impedance Tomography; frequency.
Keywords
Full Text:
PDFReferences
Abdul H.A.Z.Abd., 2014. Design and simulation of 4th order active bandpass filter using multiple feed back and Sallenkey topologies. J. Babylon Univ. Sci. No2 Vol22 2014.
Babikir Adam, E.E., Sathesh, 2021. Survey on Medical Imaging of Electrical Impedance Tomography (EIT) by Variable Current Pattern Methods. J. ISMAC 3, 82–95. https://doi.org/10.36548/jismac.2021.2.002
Basak, R., Wahid, K.A., 2022. A Rapid, Low-Cost, and High-Precision Multifrequency Electrical Impedance Tomography Data Acquisition System for Plant Phenotyping. Remote Sens. 14, 3214. https://doi.org/10.3390/rs14133214
Bera, T.K., 2018. Applications of Electrical Impedance Tomography (EIT): A Short Review. IOP Conf. Ser. Mater. Sci. Eng. 331, 012004. https://doi.org/10.1088/1757-899X/331/1/012004
Gallardo N. V., García H. M., 2022. Electrical Impedance Tomography for Hand Gesture Recognition for HMI Interaction Applications. Journal of Low Power Electronics and Applications. https://doi.org/doi.org/10.3390/ jlpea12030041
Hamilton, S.J., Hauptmann, A., 2018. Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks. IEEE Trans. Med. Imaging 37, 2367–2377. https://doi.org/10.1109/TMI.2018.2828303
Harikumar, R., Prabu, R., Raghavan, S., 2013. Electrical Impedance Tomography (EIT) and Its Medical Applications: A Review 3.
Ke, X.-Y., Hou, W., Huang, Q., Hou, X., Bao, X.-Y., Kong, W.-X., Li, C.-X., Qiu, Y.-Q., Hu, S.-Y., Dong, L.-H., 2022. Advances in electrical impedance tomography-based brain imaging. Mil. Med. Res. 9, 10. https://doi.org/10.1186/s40779-022-00370-7
Khalighi M., Vahdat B.V., Mortazavi M., and Mikaeili M., 2014. Design and Implementation of Precise Hardware for Electrical Impedance Tomography (EIT). IJST. Transactions of Electrical Engineering Vol. 38. No. E1, pp 1–20.
Mancini, R., 2002. Op Amps For Everyone. Texas: Texas Instruments Incorporated.
Mansouri, S., Alharbi, Y., Haddad, F., Chabcoub, S., Alshrouf, A., Abd-Elghany, A.A., 2021. Electrical Impedance tomography – recent applications and developments. J. Electr. Bioimpedance 12, 50–62. https://doi.org/10.2478/joeb-2021-0007
Nascimento, M.S., Alcala, G.C., Guzman, A.I.A., Corrêa, L.C., Baggio, D.M., Rossi, F.S., Fascina, L.P., Amato, M.B.P., do Prado, C., 2021. Electrical impedance tomography in pediatric patients with COVID-19, the first reports. BMC Pulm. Med. 21, 357. https://doi.org/10.1186/s12890-021-01716-y
Olalekan, O.B., Toluwani, O.V., 2017. Sallen-Key Topology, MFB and Butterworthy in Bandpass Design for Audio Circuit Design.
Pactitis, S.A, 2007. ACTIVE FILTERS Theory and Design. CRC Press Taylor & Francis Group, ISBN 978-1-4200-5477-4.
Padilha Leitzke, J., Zangl, H., 2020. A Review on Electrical Impedance Tomography Spectroscopy. Sensors 20, 5160. https://doi.org/10.3390/s20185160
Sarode V., Chimurkar P.M., and Cheeran A.N., 2012. Electrical Impedance Tomography using EIDORS in a Closed Phantom. International Journal of Computer Applications 48– No.19.
Sebu, C., 2017. Electrical Impedance Mammography: the key to low-cost, portable and non-invasive breast cancer screening? Xjenza Online 154–157. https://doi.org/10.7423/XJENZA.2017.2.09
Singh G., Anand S., Lall B., Srivastava A., and Singh V., 2012. Development of a Microcontroller based Electrical Impedance Tomography System. 2015 Long Island Systems, Applications and Technology.IEEE.
Teschner E., Imhoff M., Leonhardt S., 2013. Electrical Impedance Tomography:The realization of regional ventilation monitoring 2nd edition. Drager.Technology for life.
Winder, S., 2002. Analog and Digital Filter Design 2nd Edition. . Newnes. ISBN: 0-7506-7547-0.
DOI: https://doi.org/10.31764/orbita.v9i1.13947
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
______________________________________________________
ORBITA: Jurnal Pendidikan dan Ilmu Fisika
p-ISSN 2460-9587 || e-ISSN 2614-7017
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
EDITORIAL OFFICE: