Effect of boiling time on protein content, total soluble solids, and sensory quality of probiotic soy milk (Glycine max L.).

Muhammad Faisal, Hafasa Hafasa, Siti Malika Azizatul FItri M, Maharani Kusumaningtyas

Abstract


This study aimed to analyze the effect of different boiling time on protein content, total soluble solids (TSS), and sensory characteristics, including taste and aroma, of probiotic soy milk (Glycine max L.). The experiment was conducted using a Completely Randomized Design (CRD) consisting of four boiling time treatments of 5, 10, 15, and 20 minutes, each replicated three times, resulting in a total of 18 experimental units. The observed parameters included protein content, total soluble solids (TSS), and sensory evaluation performed by trained panelists using a hedonic test (five-point scale). Scores ranged from 1 (“dislike extremely”) to 5 (“like extremely”), where higher values indicated greater sensory preference. The collected data were statistically analyzed using Analysis of Variance (ANOVA), and when a significant difference was observed (p < 0.05), the analysis was continued with Duncan’s Multiple Range Test (DMRT) at a 5% confidence level. Data processing was performed using SPSS version 25. The results showed that boiling time had a significant effect on protein content, total soluble solids, and hedonic scores for taste and aroma attributes. The 15-minute boiling treatment produced the highest protein content (3.11%), optimal TSS value (8.9 °Brix), and the highest acceptance scores for both taste and aroma. Therefore, boiling at 95–100°C for 15 minutes can be considered the optimal condition to produce probiotic soy milk with the best balance between protein stability, total soluble solids concentration, and sensory quality.

 


Keywords


boiling time; sensory quality; probiotic soy milk; protein content; total soluble solids.

Full Text:

PDF

References


Anjum, F. M., Saeed, F., Afzaal, M., Ikram, A., & Azam, M. (2022). The effect of thermal processing on probiotics stability. In Advances in Dairy Microbial Products (pp. 295–302). Elsevier. https://doi.org/10.1016/B978-0-323-85793-2.00004-7

AOAC International. (2019). Official Methods of Analysis of AOAC International (21st ed.). . Method 979.09: Nitrogen (Total) in Milk — Kjeldahl Method. Retrieved from Https://Www.Aoac.Org/Official-Methods-of-Analysis/.

Aziz, T., Xingyu, H., Sarwar, A., Naveed, M., Shabbir, M. A., Khan, A. A., Ulhaq, T., Shahzad, M., Zhennai, Y., Shami, A., Sameeh, M. Y., Alshareef, S. A., Tashkandi, M. A., & Jalal, R. S. (2023). Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1265188

Bisson, G., Comuzzi, C., FitzGerald, J. A., Mukherjee, A., Renoldi, N., Innocente, N., Beresford, T., Mathur, H., Cotter, P. D., & Marino, M. (2025). Development of a bio-functional fermented soy beverage supplemented with microbial exopolysaccharides and its effect on the human gut microbiome in vitro. Food & Function, 16(15), 6203–6212. https://doi.org/10.1039/D5FO01288K

CARNEIRO, M. da S., RAMOS, G. L. de P. A., SILVA, M. C., & WALTER, E. H. M. (2022). Processing of soy beverages obtained from the grain, flour and powder extract and fermented by probiotics. Food Science and Technology, 42. https://doi.org/10.1590/fst.79322

Coluccia, B., Agnusdei, G. P., De Leo, F., Vecchio, Y., La Fata, C. M., & Miglietta, P. P. (2022). Assessing the carbon footprint across the supply chain: Cow milk vs soy drink. Science of The Total Environment, 806, 151200. https://doi.org/10.1016/j.scitotenv.2021.151200

Coolbear, T., Wilkinson, M. G., & Weimer, B. (2022). Lactic Acid Bacteria in Flavor Development. In Encyclopedia of Dairy Sciences (pp. 181–186). Elsevier. https://doi.org/10.1016/B978-0-12-818766-1.00019-2

Cui, S., Zhao, N., Lu, W., Zhao, F., Zheng, S., Wang, W., & Chen, W. (2019). Effect of different Lactobacillus species on volatile and nonvolatile flavor compounds in juices fermentation. Food Science & Nutrition, 7(7), 2214–2223. https://doi.org/10.1002/fsn3.1010

Dan, T., Chen, H., Li, T., Tian, J., Ren, W., Zhang, H., & Sun, T. (2019). Influence of Lactobacillus plantarum P-8 on Fermented Milk Flavor and Storage Stability. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.03133

Delgado, S., Guadamuro, L., Flórez, A. B., Vázquez, L., & Mayo, B. (2019). Fermentation of commercial soy beverages with lactobacilli and bifidobacteria strains featuring high β-glucosidase activity. Innovative Food Science & Emerging Technologies, 51, 148–155. https://doi.org/10.1016/j.ifset.2018.03.018

Fathurohman, M., Aprillia, A. Y., Pratita, A. T. K., & Tenderly, V. F. (2020). Diversifikasi Produksi Susu Kedelai Berbasis Mikroalga Autotrofik Guna Meningkatkan Indeks Nutraseutikal. Jurnal Aplikasi Teknologi Pangan, 9(2), 70–76. https://doi.org/10.17728/jatp.6150

Geburt, K., Albrecht, E. H., Pointke, M., Pawelzik, E., Gerken, M., & Traulsen, I. (2022). A Comparative Analysis of Plant-Based Milk Alternatives Part 2: Environmental Impacts. Sustainability, 14(14), 8424. https://doi.org/10.3390/su14148424

Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292–302. https://doi.org/10.1111/j.1541-4337.2010.00110.x

GUERRERO-BELTRÁN, J. A., ESTRADA-GIRÓN, Y., SWANSON, B. G., & BARBOSA-CÁNOVAS, G. V. (2009). INACTIVATION KINETICS OF LIPOXYGENASE IN PRESSURIZED RAW SOYMILK AND SOYMILK FROM HIGH-PRESSURE TREATED SOYBEANS. Journal of Food Processing and Preservation, 33(2), 143–158. https://doi.org/10.1111/j.1745-4549.2008.00234.x

Han, H., Choi, J. K., Park, J., Im, H. C., Han, J. H., Huh, M. H., & Lee, Y.-B. (2021). Recent innovations in processing technologies for improvement of nutritional quality of soymilk. CyTA - Journal of Food, 19(1), 287–303. https://doi.org/10.1080/19476337.2021.1893824

Harper, A. R., Dobson, R. C. J., Morris, V. K., & Moggré, G. (2022). Fermentation of plant‐based dairy alternatives by lactic acid bacteria. Microbial Biotechnology, 15(5), 1404–1421. https://doi.org/10.1111/1751-7915.14008

Hasan, M., Meena, N. L., Krishnan, V., Rudra, S. G., & Dahuja, A. (2023). Impact of Storage on Probiotic Viability, Nutritional and Sensory Quality of Fermented Soymilk Produced from Different Soybean Varieties. LEGUME RESEARCH - AN INTERNATIONAL JOURNAL, Of. https://doi.org/10.18805/LR-5051

Hidayati, D., Soetjipto, S., & Catur Adi, A. (2021). Characteristic and Isoflavone Level of Soymilk Fermented by Single and Mixed Culture of <i>Lactobacillus plantarum </i>and Yoghurt Starter. Journal of Food and Nutrition Research, 9(1), 55–60. https://doi.org/10.12691/jfnr-9-1-9

Huo, C., Yang, X., & Li, L. (2023). Non-beany flavor soymilk fermented by lactic acid bacteria: Characterization, stability, antioxidant capacity and in vitro digestion. Food Chemistry: X, 17, 100578. https://doi.org/10.1016/j.fochx.2023.100578

Ji, G., Li, X., Dong, Y., & Shi, Y. (2022). Composition, formation mechanism, and removal method of off‐odor in soymilk products. Journal of Food Science, 87(12), 5175–5190. https://doi.org/10.1111/1750-3841.16370

Ji, Y., Silva, M., Lin, R., Adhikari, B., & Chandrapala, J. (2024). Gelation and Thermal Stability of Camel Milk Protein and Soy protein Blends: A Review. Food Reviews International, 40(10), 3816–3846. https://doi.org/10.1080/87559129.2024.2374810

Ju, S., Song, S., Lee, J., Hwang, S., Lee, Y., Kwon, Y., & Lee, Y. (2021). Development of Nano Soy Milk through Sensory Attributes and Consumer Acceptability. Foods, 10(12), 3014. https://doi.org/10.3390/foods10123014

Kumari, M., Kokkiligadda, A., Dasriya, V., & Naithani, H. (2022). Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. Journal of Applied Microbiology, 133(1), 104–119. https://doi.org/10.1111/jam.15342

Kwok, K.-C., Liang, H.-H., & Niranjan, K. (2002). Optimizing Conditions for Thermal Processes of Soy Milk. Journal of Agricultural and Food Chemistry, 50(17), 4834–4838. https://doi.org/10.1021/jf020182b

L. Caluza, Prof. G. (2019). Shelf Life and Acceptability of Different Fruity Flavored Soy milk under two Types of Storage Method. International Journal of Science and Management Studies (IJSMS), 107–113. https://doi.org/10.51386/25815946/ijsms-v2i1p114

Letizia, F., Fratianni, A., Cofelice, M., Testa, B., Albanese, G., Di Martino, C., Panfili, G., Lopez, F., & Iorizzo, M. (2023). Antioxidative Properties of Fermented Soymilk Using Lactiplantibacillus plantarum LP95. Antioxidants, 12(7), 1442. https://doi.org/10.3390/antiox12071442

Li, X., Zhao, Z., Shi, S., Li, D., Sang, Y., Wang, P., Zhao, L., Wang, F., Fang, B., Chen, S., Li, Y., Jiang, Z., Luo, J., Zhang, X., & Wang, R. (2024). Flavor properties of post-heated fermented milk revealed by a comprehensive analysis based on volatile and non-volatile metabolites and sensory evaluation. Current Research in Food Science, 9, 100892. https://doi.org/10.1016/j.crfs.2024.100892

Li, Y., Zhang, W., Chen, Y., Liu, L., Wu, X., Luo, Y., & Zhang, Y. (2025). Enhanced Quality in Bean Products Through Mixed Fermentation: A Comparative Analysis of Physicochemical, Structural, and Functional Properties of Soybean Products. Foods, 14(11), 1985. https://doi.org/10.3390/foods14111985

Liu, Z., Fu, Y., Liu, Y., Chen, X., Jiang, M., & Rui, X. (2023). Lactic acid bacteria fermented soy β-conglycinin: Assessment of structural conformational feature and immunoglobulin E reactivity. LWT, 173, 114246. https://doi.org/10.1016/j.lwt.2022.114246

Long, Z., Yi, X., Gao, X., Wang, Y., Guo, J., Gao, S., Xia, G., & Shen, X. (2025). Combining Sensory Analysis and Flavoromics to Determine How the Maillard Reaction Affects the Flavors of Golden Pomfret Hydrolysates. Foods, 14(4), 560. https://doi.org/10.3390/foods14040560

Mahmoud, A. A., Owayss, A. A., Iqbal, J., & Raweh, H. S. A. (2023). Modified Equations to Calculate Water Content and Refractive Index of Honey Based on Its Total Soluble Solids. Journal of Food Engineering and Technology, 12(1), 29–33. https://doi.org/10.32732/jfet.2023.12.1.29

Mendoza-Avendaño, C., Meza-Gordillo, R., Ovando-Chacón, S. L., Luján-Hidalgo, M. C., Ruiz-Cabrera, M. A., Grajales-Lagunes, A., Ruiz-Valdiviezo, V. M., Gutiérrez-Miceli, F., & Abud-Archila, M. (2018). EVALUATION OF BIOACTIVE AND ANTI-NUTRITIONAL COMPOUNDS DURING SOY MILK FERMENTATION WITH Lactobacillus plantarum BAL-03-ITTG AND Lactobacillus fermentum BAL-21-ITTG. Revista Mexicana de Ingeniería Química, 18(3), 967–978. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Mendoza

Nanakali, N. M., Muhammad Al‐saadi, J., & Sulaiman Hadi, C. (2023). Functional and physiochemical properties of the yoghurt modified by heat lactosylation and microbial transglutaminase cross‐linking of milk proteins. Food Science & Nutrition, 11(2), 722–732. https://doi.org/10.1002/fsn3.3108

Rana, A., Taneja, N. K., Raposo, A., Alarifi, S. N., Teixeira-Lemos, E., Lima, M. J., Gonçalves, J. C., & Dhewa, T. (2024). Exploring prebiotic properties and its probiotic potential of new formulations of soy milk-derived beverages. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1404907

Rana, A., Taneja, N. K., Singh, A., Dhewa, T., Kumar, V., Kumar, A., Chauhan, K., Juneja, V., & Oberoi, H. S. (2025). Synergistic fermentation of vitamin B2 (riboflavin) bio-enriched soy milk: optimization and techno-functional characterization of next generation functional vegan foods. Discover Food, 5(1), 10. https://doi.org/10.1007/s44187-025-00269-x

Rani, V. U., & Pradeep, B. V. (2017). Transformation, Purification, and Quantification of Soy Isoflavone from Lactobacillus sp. and Bifidobacterium sp. In Recent advances in Applied Microbiology (pp. 195–211). Springer Singapore. https://doi.org/10.1007/978-981-10-5275-0_9

Ruiz de la Bastida, A., Peirotén, Á., Langa, S., Rodríguez-Mínguez, E., Curiel, J. A., Arqués, J. L., & Landete, J. M. (2023). Fermented soy beverages as vehicle of probiotic lactobacilli strains and source of bioactive isoflavones: A potential double functional effect. Heliyon, 9(4), e14991. https://doi.org/10.1016/j.heliyon.2023.e14991

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), 6. https://doi.org/10.1186/s43014-020-0020-5

Santos, D. C. dos, Oliveira Filho, J. G. de, Santana, A. C. A., Freitas, B. S. M. de, Silva, F. G., Takeuchi, K. P., & Egea, M. B. (2019). Optimization of soymilk fermentation with kefir and the addition of inulin: Physicochemical, sensory and technological characteristics. LWT, 104, 30–37. https://doi.org/10.1016/j.lwt.2019.01.030

Sarić, Z., Barać, M., Barukčić, I., Kostić, A., Božanić, R., & Šertović, E. (2019). Physical, Chemical, Microbiological and Sensory Characteristics of a Probiotic Beverage Produced from Different Mixtures of Cow’s Milk and Soy Beverage by Lactobacillus acidophilus La5 and Yoghurt Culture. Food Technology and Biotechnology, 57(4), 461–467. https://doi.org/10.17113/ftb.57.04.19.6344

Sebastian, A. ;Barus, T. ;Mulyono, N. ;Yanti. (2018). Effects of fermentation and sterilization on quality of soybean milk. International Food Research Journal, 25(6), 2420.

Sun, Q., Shi, X., Zhao, Y., Cui, R., Yao, Y., Liu, X., Wang, H., Zhang, L., & Song, L. (2025). Fermented Plant-Based Milks Based on Chestnut and Soybean: Comprehensive Evaluation of Fermentation Characteristics and Aroma Profiles Using Four Lactic Acid Bacteria Strains. Foods, 14(14), 2511. https://doi.org/10.3390/foods14142511

Sun, Y., Xu, J., Zhao, H., Li, Y., Zhang, H., Yang, B., & Guo, S. (2023). Antioxidant properties of fermented soymilk and its anti-inflammatory effect on DSS-induced colitis in mice. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1088949

Sun, Z., He, B., Chen, J., Wang, X., Wang, C., Qiao, F., & Li, W. (2022). Evaluation of Soybean Varieties for Soy Milk Based on Factor and Cluster Analysis. Journal of Biobased Materials and Bioenergy, 16(4), 624–632. https://doi.org/10.1166/jbmb.2022.2211

Tangyu, M., Fritz, M., Tan, J. P., Ye, L., Bolten, C. J., Bogicevic, B., & Wittmann, C. (2023). Flavour by design: food-grade lactic acid bacteria improve the volatile aroma spectrum of oat milk, sunflower seed milk, pea milk, and faba milk towards improved flavour and sensory perception. Microbial Cell Factories, 22(1), 133. https://doi.org/10.1186/s12934-023-02147-6

Tian, H., Shi, Y., Zhang, Y., Yu, H., Mu, H., & Chen, C. (2019). Screening of aroma‐producing lactic acid bacteria and their application in improving the aromatic profile of yogurt. Journal of Food Biochemistry, 43(10). https://doi.org/10.1111/jfbc.12837

Upadhyaya, S. (2024). Fermentation as a Method of Food Processing and Fermented Food as Probiotics: A Review. Food Science and Nutrition, 10(5), 1–11. https://doi.org/10.24966/FSN-1076/100203

Valero-Cases, E., Cerdá-Bernad, D., Pastor, J.-J., & Frutos, M.-J. (2020). Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients, 12(6), 1666. https://doi.org/10.3390/nu12061666

Wang, J., Wu, R., Zhang, W., Sun, Z., Zhao, W., & Zhang, H. (2013). Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk. Journal of Dairy Science, 96(9), 5603–5624. https://doi.org/10.3168/jds.2013-6927

Xiang, J., Liu, F., Wang, B., Chen, L., Liu, W., & Tan, S. (2021). A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods, 10(9), 1998. https://doi.org/10.3390/foods10091998

Yan, F., Tong, S., Zhang, J., Zhao, Y., & Liu, P. (2024). Effects of soybean endogenous enzyme hydrolysis on the quality of soymilk after blanching. Food Bioscience, 57, 103469. https://doi.org/10.1016/j.fbio.2023.103469

Yang, A., Smyth, H., Chaliha, M., & James, A. (2016). Sensory quality of soymilk and tofu from soybeans lacking lipoxygenases. Food Science & Nutrition, 4(2), 207–215. https://doi.org/10.1002/fsn3.274

Yerlikaya, O. (2014). Starter cultures used in probiotic dairy product preparation and popular probiotic dairy drinks. Food Science and Technology (Campinas), 34(2), 221–229. https://doi.org/10.1590/fst.2014.0050

Zhang, P., Tang, F., Cai, W., Zhao, X., & Shan, C. (2022). Evaluating the effect of lactic acid bacteria fermentation on quality, aroma, and metabolites of chickpea milk. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1069714

Zhang, X., Li, Y., Yang, J. J., Ma, X. Y., Jia, X. D., Li, A. L., & Du, P. (2020). The effects of inulin combined with ogalacto-oligosaccharide on the various properties of synbiotic soy cheese containing Lactobacillus acidophilus KLDS 1.0738. Quality Assurance and Safety of Crops & Foods, 12(3), 46–54. https://doi.org/10.15586/QAS2019.740

Zhang, X., Qi, J.-R., Li, K.-K., Yin, S.-W., Wang, J.-M., Zhu, J.-H., & Yang, X.-Q. (2012). Characterization of soy β-conglycinin–dextran conjugate prepared by Maillard reaction in crowded liquid system. Food Research International, 49(2), 648–654. https://doi.org/10.1016/j.foodres.2012.09.001

Zhang, Z., Dong, J., Zheng, L., Chen, Y., Fang, C., Chen, J., Guo, J., Sun, H., Guo, N., Fang, X., & Zhu, G. (2025a). Comparative analysis of physicochemical properties and volatile flavor compounds of a novel brown soy yogurt prepared via Maillard browning reaction. Food Chemistry: X, 29, 102695. https://doi.org/10.1016/j.fochx.2025.102695

Zhang, Z., Dong, J., Zheng, L., Chen, Y., Fang, C., Chen, J., Guo, J., Sun, H., Guo, N., Fang, X., & Zhu, G. (2025b). Comparative analysis of physicochemical properties and volatile flavor compounds of a novel brown soy yogurt prepared via Maillard browning reaction. Food Chemistry: X, 29, 102695. https://doi.org/10.1016/j.fochx.2025.102695

Zhou, R. Y., Huang, X., Liu, Z., Chua, J.-Y., & Liu, S.-Q. (2022). Evaluating the effect of lactic acid bacterial fermentation on salted soy whey for development of a potential novel soy sauce-like condiment. Current Research in Food Science, 5, 1826–1836. https://doi.org/10.1016/j.crfs.2022.10.004

Zong, L., Lu, M., Wang, W., Wa, Y., Qu, H., Chen, D., Liu, Y., Qian, Y., Ji, Q., & Gu, R. (2022). The Quality and Flavor Changes of Different Soymilk and Milk Mixtures Fermented Products during Storage. Fermentation, 8(12), 668. https://doi.org/10.3390/fermentation8120668

Zong, L., Qu, H., Wang, W., Chen, D., Wa, Y., Huang, Y., & Gu, R. (2025). Effect of key flavor compounds in fermented soymilk on sensory attributes: Integrating electronic sensory technology with GC–MS analysis. Food Chemistry: X, 29, 102750. https://doi.org/10.1016/j.fochx.2025.102750




DOI: https://doi.org/10.31764/jafp.v5i2.36996

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Faisal, Hafasa Hafasa, Siti Malika Azizatul FItri M

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JAFP is indexing in the following databases: