IMPROVING ANTIBACTERIAL, THERMAL AND MECHANICAL PROPERTIES OF PVA BIOCOMPOSITES REINFORCED WITH TIMOHO FIBER NANOCELLULOSE

Suteja Suteja, Syarif Hidayatullah, Ahmad Akromul Huda

Abstract


Polyvinyl alcohol (PVA) has promising potential as gas purification membrane and bioplastic substitute for conventional materials. PVA material was reinforced with nanocellulose timoho fibers (NCT). Ten grams of NCT, 30 mL of distilled water, and 10 grams of PVA were stirred (500 rpm) at <80 oC on a magnetic stirrer until gel formed, then spread on a Petri dish and dried in an oven at 50 °C for 21 hours. The elongation, tensile strength, and elastic modulus test results of PVA-NCT biocomposites showed increases of 21%, 29.97%, and 31.57%, respectively, compared to PVA biocomposites. This was due to the role of NCT as reinforcing agent and the mobility of PVA when tensile test. SEM morphology showed a fine speckled surface due to clumping. The thermal resistance of biocomposite increased due to the good interfacial bonding between NCT and the PVA matrix, thereby reducing the rate of weight loss. Exothermic reactions occurred in both biocomposites. The PVA biocomposite had a melting temperature of 110.34 °C, and PVA-NCT biocomposite 119.83 °C. The antibacterial activity of the PVA biocomposite has a lower inhibitory power compared to the PVA-NCT biocomposite. These biocomposites can be used for membrane materials and environmentally friendly bioplastics. 


Keywords


Anti bacterial. Poly vinyl alcohol (PVA); Nanocellulose; Timoho bark fiber; Mechanical Properties;

Full Text:

PDF

References


Cholant, G. M., Bosenbecker, M. W., Reichert, A. A., Beatrice, C. A. G., Freitas, T. C., Freitas, N. D., de Nunes, N. V. V., Galio, A. F., Missio, A. L., & de Oliveira, A. D. (2025). Polyvinyl Alcohol Films Reinforced with Nanocellulose from Rice Husk. Macromol, 5(1), 6. https://doi.org/10.3390/macromol5010006

Diharjo, K., Gapsari, F., Andoko, A., Wijaya, M. N., Mavinkere Rangappa, S., & Siengchin, S. (2024). Flammability and thermal resistance of Ceiba petandra fiber‐reinforced composite with snail powder filler. Polymer Composites, 45(6), 4947–4960. https://doi.org/10.1002/pc.28100

Gapsari, F., Darmadi, D. B., Juliano, H., Hidayatullah, S., Suteja, Mavinkere Rangappa, S., & Siengchin, S. (2023). Modification of palm fiber with chitosan-AESO blend coating. International Journal of Biological Macromolecules, 242, 125099. https://doi.org/10.1016/j.ijbiomac.2023.125099

Gapsari, F., Kartikowati, C. W., Madurani, K. A., Harmayanti, A., & Sulaiman, A. M. (2025a). Enhanced PVA-bioplastic membranes with nanocellulose and hydroxyapatite derived from blood clam shells. Environmental Nanotechnology, Monitoring & Management, 23, 101035. https://doi.org/10.1016/j.enmm.2024.101035

Gapsari, F., Kartikowati, C. W., Madurani, K. A., Harmayanti, A., & Sulaiman, A. M. (2025b). Enhanced PVA-bioplastic membranes with nanocellulose and hydroxyapatite derived from blood clam shells. Environmental Nanotechnology, Monitoring & Management, 23, 101035. https://doi.org/10.1016/j.enmm.2024.101035

Gapsari, F., Purnowidodo, A., Hidayatullah, S., & Suteja, S. (2021). Characterization of Timoho Fiber as a reinforcement in green composite. Journal of Materials Research and Technology, 13, 1305–1315. https://doi.org/10.1016/j.jmrt.2021.05.049

Gapsari, F., Purnowidodo, A., Setyarini, P. H., Hidayatullah, S., Suteja, Izzuddin, H., Subagyo, R., Mavinkere Rangappa, S., & Siengchin, S. (2022a). Properties of organic and inorganic filler hybridization on Timoho Fiber‐reinforced polyester polymer composites. Polymer Composites, 43(2), 1147–1156. https://doi.org/10.1002/pc.26443

Gapsari, F., Purnowidodo, A., Setyarini, P. H., Hidayatullah, S., Suteja, Izzuddin, H., Subagyo, R., Mavinkere Rangappa, S., & Siengchin, S. (2022b). Properties of organic and inorganic filler hybridization on Timoho Fiber-reinforced polyester polymer composites. Polymer Composites, 43(2), 1147–1156. https://doi.org/10.1002/pc.26443

Herlina Sari, N., Hidayatullah, S., & Maharsa Pradityatama, dan. (2025). KARAKTERISTIK DELAMINASI DAN MEKANIK KOMPOSIT EPOXY LAMINAT ANYAMAN SERAT KULIT KAPOK-ALUMINIUM (Vol. 25, Issue 2).

Jailani, A., Hidzer, M. H., Firdaus, A. H. M., Sapuan, S. M., Zainudin, E. S., Atiqah, A., Wan Jaafar, W. M., & Suryanegara, L. (2025). Enhancing polyvinyl alcohol (PVA) nanocomposites: Key properties, applications and challenges in advanced engineering. Defence Technology. https://doi.org/10.1016/j.dt.2025.05.020

Kassim, A., Omuse, G., Premji, Z., & Revathi, G. (2016). Comparison of Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines for the interpretation of antibiotic susceptibility at a University teaching hospital in Nairobi, Kenya: A cross-sectional study. Annals of Clinical Microbiology and Antimicrobials, 15(1). https://doi.org/10.1186/s12941-016-0135-3

Mahardika, M., Asrofi, M., Amelia, D., Syafri, E., Mavinkere Rangappa, S., & Siengchin, S. (2021). Tensile Strength and Moisture Resistance Properties of Biocomposite Films Based on Polyvinyl Alcohol (PVA) with Cellulose as Reinforcement from Durian Peel Fibers. E3S Web of Conferences, 302, 02001. https://doi.org/10.1051/e3sconf/202130202001

Mahardika, M., Masruchin, N., Amelia, D., Ilyas, R. A., Septevani, A. A., Syafri, E., Hastuti, N., Karina, M., Khan, M. A., Jeon, B. H., & Sari, N. H. (2024). Nanocellulose reinforced polyvinyl alcohol-based bio-nanocomposite films: improved mechanical, UV-light barrier, and thermal properties. RSC Advances, 14(32), 23232–23239. https://doi.org/10.1039/d4ra04205k

Muthupandeeswari, A., Kalyani, P., & Vickraman, P. (2022a). Evaluation of vital features of PVA–CaCO3 nanocomposite films for biodegradable packaging applications. Polymer Bulletin, 79(1), 65–85. https://doi.org/10.1007/s00289-020-03492-x

Muthupandeeswari, A., Kalyani, P., & Vickraman, P. (2022b). Evaluation of vital features of PVA–CaCO3 nanocomposite films for biodegradable packaging applications. Polymer Bulletin, 79(1), 65–85. https://doi.org/10.1007/s00289-020-03492-x

Patel, A. K., Bajpai, R., & Keller, J. M. (2014). On the crystallinity of PVA/palm leaf biocomposite using DSC and XRD techniques. Microsystem Technologies, 20(1), 41–49. https://doi.org/10.1007/s00542-013-1882-0

Rahim, E. A., Ridhay, A., Sitti Nur Halizah, Indriani, Sosidi, H., Khairuddin, Inda, N. I., Nurakhirawati, Mirzan, Moh., & Amar, A. A. (2024). Sintesis dan Karakterisasi Polivinil Alkohol (PVA) Terlapis Polieugenol. KOVALEN: Jurnal Riset Kimia, 10(1), 69–76. https://doi.org/10.22487/kovalen.2024.v10.i1.17088

Ramezani Kakroodi, A., Cheng, S., Sain, M., & Asiri, A. (2014). Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from Aloe vera Rind. Journal of Nanomaterials, 2014(1). https://doi.org/10.1155/2014/903498

Sari, N. H., Syafri, E., Suteja, Fatriasari, W., & Karimah, A. (2024). Biocomposites Based On Micro Cellulose Fibers Extracted From Paederia Foetida Stems And Investigation Of Important Properties. Journal of Applied Science and Engineering, 27(9), 3191–3202. https://doi.org/10.6180/jase.202409_27(9).0015

Sau, S., Pandit, S., & Kundu, S. (2021). Crosslinked poly (vinyl alcohol): Structural, optical and mechanical properties. Surfaces and Interfaces, 25, 101198. https://doi.org/10.1016/j.surfin.2021.101198

Schoeler, M. N., Scremin, F. R., de Mendonça, N. F., Benetti, V. P., de Jesus, J. A., de Oliveira Basso, R. L., & Stival Bittencour, P. R. (2020). CELLULOSE NANOFIBERS from CASSAVA AGRO-INDUSTRIAL WASTE AS REINFORCEMENT in PVA FILMS. Quimica Nova, 43(6), 711–717. https://doi.org/10.21577/0100-4042.20170542

Suganthi, S., Vignesh, S., Kalyana Sundar, J., & Raj, V. (2020). Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Applied Water Science, 10(4), 100. https://doi.org/10.1007/s13201-020-1162-y

Suteja, Hidayatullah, S., Gapsari, F., Purnowidodo, A., Susanti, L., Rangappa, S. M., & Siengchin, S. (2025). Enhancing the performance of natural fiber composites: Integrating Walikukun fiber and aluminum filler in epoxy matrices. Reactive and Functional Polymers, 214. https://doi.org/10.1016/j.reactfunctpolym.2025.106302




DOI: https://doi.org/10.31764/protech.v5i2.36289

Refbacks

  • There are currently no refbacks.


Protech Biosystems Journal is indexing in the following databases:

   

 

Editorial Office: