Extraction and isolation of microcellulose from nunang tree (cordia dichotoma) stem fibers
Abstract
Mikro serat (holoselulosa) dari serat batang pohon nunang memiliki karakteristik mekanik, ketahanan panas yang baik dan densitas ringan sehingga cocok untuk material kemasan hasil pertanian (biokomposit). Lembaran serat nunang diperoleh dengan merendam kulit batang nunang dalam air dan dipotong ±1 cm untuk diblender, dan dilanjutkan proses pengayakan 40 mesh. Serat makro nunang kemudian diputihkan dengan larutan NaClO2 5% dan dimerserisasi dengan larutan NaOH 9% pada suhu 65 °C dan kecepatan 500 rpm selama 2 jam di atas magnetic stirrer. Hasil uji FTIR mengungkapkan telah hilangnya serapan pada bilangan gelombang 2026–1698 cm-1 yang merupakan indikasi hilangnya senyawa lignin, hemiselulosa, lilin dan senyawa pengotor lainnya. Pengujian difraksi sinar-X (XRD) menunjukkan niilai indeks kekristalan yang lebih tinggi setelah perlakuan kimia NaClO2 dan NaOH, sementara itu pengamatan foto SEM menunjukkan fitur permukaan yang lebih kasar sebagai tanda larutnya material pengotor. Setelah perlakuan kimia serat mikro juga mengindikasikan ketahanan termal yang lebih tinggi. Penelitian ini menunjukkan bahwa serat mikro nunang setelah perlakuan kimia memiliki potensi untuk industri kemasan hasil pertanian seperti film transparan ataupun bioplastik.
Full Text:
PDF (Bahasa Indonesia)References
Andoko, A., Gapsari, F., Diharjo, K., M R, S., & Siengchin, S. (2023). Isolation of microcellulose from timoho fiber using the process of delinigfication and maceration: Evaluation of physical, chemical, structural, and thermal properties. International Journal of Biological Macromolecules, 224, 48–54. https://doi.org/10.1016/j.ijbiomac.2022.10.225
Andoko, A., Gapsari, F., Prasetya, R., Sulaiman, A. M., Rangappa, S. M., & Siengchin, S. (2025). Walikukun fiber as lightweight polymer reinforcement: physical, chemical, mechanical, thermal, and morphological properties. Biomass Conversion and Biorefinery, 15(1), 1269–1281. https://doi.org/10.1007/s13399-023-05203-8
Bozdoğan, A., Aksakal, B., & Yargi, O. (2020). Film formation and mechanical properties of an opaque titanium dioxide and transparent polyvinyl alcohol composite films. Polymer Composites, 41(3), 939–950. https://doi.org/10.1002/pc.25425
Cholant, G. M., Bosenbecker, M. W., Reichert, A. A., Beatrice, C. A. G., Freitas, T. C., Freitas, N. D., de Nunes, N. V. V., Galio, A. F., Missio, A. L., & de Oliveira, A. D. (2025). Polyvinyl Alcohol Films Reinforced with Nanocellulose from Rice Husk. Macromol, 5(1), 6. https://doi.org/10.3390/macromol5010006
Faisal, M., Harianto, A., Hutasoit, J. P., Amrullah, S., & Ardiansyah, A. (2023). The effect of sodium tripolyphosphate (STPP) concentration on the physical and chemical properties of modified yellow pumpkin starch (Modified cucurbita moschata starch). Jurnal Agrotek Ummat, 10(3), 206. https://doi.org/10.31764/jau.v10i3.15817
Gapsari, F. (2025). Enhanced structural and thermal properties of oil palm frond fiber-derived nanocellulose using chemical and mechanical treatments for eco-friendly composites. Disseminating Information on the Research of Mechanical Engineering-Jurnal Polimesin, 23(2). http://e-jurnal.pnl.ac.id/polimesin
Gapsari, F., Andoko, A., Diharjo, K., Sanjay, M. R., & Siengchin, S. (2024). The effectiveness of isolation and characterization nanocelullose from Timoho fiber for sustainable materials. Biomass Conversion and Biorefinery, 14(14), 16487–16497. https://doi.org/10.1007/s13399-022-03672-x
Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181, 1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045
Omran, A. A. B., Mohammed, A. A. B. A., Sapuan, S. M., Ilyas, R. A., Asyraf, M. R. M., Koloor, S. S. R., & Petrů, M. (2021). Micro-and nanocellulose in polymer composite materials: A review. In Polymers (Vol. 13, Issue 2, pp. 1–30). MDPI AG. https://doi.org/10.3390/polym13020231
Pattnaik, F., Nanda, S., Kumar, V., Naik, S., & Dalai, A. K. (2022). Isolation of cellulose fibers from wetland reed grass through an integrated subcritical water hydrolysis-pulping-bleaching process. Fuel, 311, 122618. https://doi.org/10.1016/j.fuel.2021.122618
Pinto, E., Aggrey, W. N., Boakye, P., Amenuvor, G., Sokama-Neuyam, Y. A., Fokuo, M. K., Karimaie, H., Sarkodie, K., Adenutsi, C. D., Erzuah, S., & Rockson, M. A. D. (2022). Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Scientific African, 15, e01078. https://doi.org/10.1016/j.sciaf.2021.e01078
Randis, R., Darmadi, D. B., Gapsari, F., & Sonief, A. A. A. (2024). Isolation and characterization of microcrystalline cellulose from oil palm fronds biomass using consecutive chemical treatments. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100616
Risite, H., Salim, M. H., Oudinot, B. T., Ablouh, E. houssaine, Joyeux, H. T., Sehaqui, H., Razafimahatratra, J. H. A., Qaiss, A. E. K., El Achaby, M., & Kassab, Z. (2022). Artemisia annua Stems a New Sustainable Source for Cellulosic Materials: Production and Characterization of Cellulose Microfibers and Nanocrystals. Waste and Biomass Valorization, 13(4), 2411–2423. https://doi.org/10.1007/s12649-021-01658-w
Schoeler, M. N., Scremin, F. R., de Mendonça, N. F., Benetti, V. P., de Jesus, J. A., de Oliveira Basso, R. L., & Stival Bittencour, P. R. (2020). CELLULOSE NANOFIBERS from CASSAVA AGRO-INDUSTRIAL WASTE AS REINFORCEMENT in PVA FILMS. Quimica Nova, 43(6), 711–717. https://doi.org/10.21577/0100-4042.20170542
Suteja, Hidayatullah, S., Gapsari, F., Purnowidodo, A., Susanti, L., Rangappa, S. M., & Siengchin, S. (2025). Enhancing the performance of natural fiber composites: Integrating Walikukun fiber and aluminum filler in epoxy matrices. Reactive and Functional Polymers, 214. https://doi.org/10.1016/j.reactfunctpolym.2025.106302
Tao, S., Chen, Y., Qin, S., Zhang, C., & Qi, H. (2024). Holocellulose fibers and paper from birch based on peracetic acid treatment. Wood Science and Technology, 58(2), 609–625. https://doi.org/10.1007/s00226-024-01542-5
Vinod, A., Sanjay, M. R., Siengchin, S., & Fischer, S. (2021). Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: Influence of surface modification techniques. Construction and Building Materials, 303, 124509. https://doi.org/10.1016/j.conbuildmat.2021.124509
Wang, N., Xu, B., Wang, X., Lang, J., & Zhang, H. (2022). Chemical and Structural Elucidation of Lignin and Cellulose Isolated Using DES from Bagasse Based on Alkaline and Hydrothermal Pretreatment. Polymers, 14(14), 2756. https://doi.org/10.3390/polym14142756
Wirawan, W. A., Choiron, Moch. A., Siswanto, E., & Widodo, T. D. (2022). Morphology, Structure, and Mechanical Properties of New Natural Cellulose Fiber Reinforcement from Waru (Hibiscus Tiliaceus) Bark. Journal of Natural Fibers, 19(15), 12385–12397. https://doi.org/10.1080/15440478.2022.2060402
DOI: https://doi.org/10.31764/jau.v12i4.35596
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Suteja, Sari & Pradityatama

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

| | |||
| |||
| | ![]() | |
|
POSTAL ADDRESS










