Study Modeling Population Growth using a Logistic Model to Analyze and Predicting Population Density in NTB Province

Elna Farida, Syaharuddin Syaharuddin, Vera Mandailina

Abstract


Abstract: This study aims to analyze and predict population density in West Nusa Tenggara (NTB) Province using an experimental quantitative approach through a logistic model. Secondary data were obtained from the NTB Central Bureau of Statistics (BPS), including population and area during the period 2014-2023. The research stages include tabulation, data visualization, logistic model building with MATLAB, and accuracy evaluation using MSE and MAPE. The analysis results showed a stable population growth trend with an average of 272.8 thousand people and a standard deviation of 11.21. The model projected density until 2028 with high accuracy (MAPE 1.25%; MSE 18.82), and estimated the maximum capacity of the area at 298.56 people/km². The findings show that the logistic model is able to effectively represent population dynamics and can be used as a basis for development planning. The practical implications of this study include support for spatial policy making, density control, and preparedness for environmental pressures. In the future, integration of spatial data and socio-economic variables is recommended to improve the accuracy of the model in supporting adaptive and sustainable regional development.

Keywords


Population Growth, Logistic Model, Population Density

Full Text:

PDF

References


A., & Dzul Fadlli, M. (2024). The Effect of Population, HDI, Poverty, and PMDN Investment on Economic Growth in NTB Province. International Journal Of Multidisciplinary Research And Analysis. https://doi.org/10.47191/ijmra/v7-i03-12

Adnyana, I. P. C. P., Hilmiati, N., & Astiti, L. G. S. (2021). The growth of cattle population in West Nusa Tenggara (NTB) and its development prospects. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/667/1/012054

Anggraeni, D., Afifah, D., Hayuhantika, D., Hastari, R., & Puspasari, R. (2020). Population Projection Using the Implementation of Differential Equation of Logistic Models. https://doi.org/10.4108/eai.13-2-2019.2286525

Fejriani, F., Hendrawansyah, M., Muharni, L., Handayani, S. F., & Syaharuddin. (2020). Forecasting Peningkatan Jumlah Penduduk Berdasarkan Jenis Kelamin menggunakan Metode Arima. Jurnal Kajian, Penelitian Dan Pengembangan Pendidikan, 8(1 April), 27–36. http://journal.ummat.ac.id/index.php/geography/article/view/2261/pdf

I Gusti Ayu Ratih Chantika Nariswari, Ni Nyoman Geriputri, & Marie Yuni Andari. (2022). Karakteristik Kelainan Refraksi Pada Anak Usia Sekolah Di Poli Mata Rsud Provinsi Ntb Tahun 2019. Unram Medical Journal. https://doi.org/10.29303/jku.v11i4.843

Kurniawan, A., Holisin, I., & Kristanti, F. (2017). Aplikasi Persamaan Diferensial Biasa Model Eksponensial dan Logistik pada Pertumbuhan Penduduk Kota Surabaya. MUST: Journal of Mathematics Education, Science and Technology. https://doi.org/10.30651/must.v2i1.529

Nisa, K. (2019). Analisis Faktor-Faktor yang Mempengaruhi Tingkat Migrasi Tenaga Kerja Indonesia (TKI) (Studi Kasus Pada 6 Provinsi Tahun 2008-2017). FEB UIN Syarif Hidayatullah.

Nurmadhani, N., & Faisol, F. (2022). Penerapan Model Pertumbuhan Logistik Dalam Memproyeksikan Jumlah Penduduk Di Kabupaten Sumenep. Jurnal Edukasi Dan Sains Matematika (JES-MAT). https://doi.org/10.25134/jes-mat.v8i2.5436

Rahmasari, A., Sunani, E. H., Jannah, M., Fathulaili, F., Kurnia, L., & Satria, A. (2019). ARDL Method: Forecasting Data Kemiskinan di NTB. JTAM | Jurnal Teori Dan Aplikasi Matematika. https://doi.org/10.31764/jtam.v3i1.767

Rozikin, N., Sarjana, K., Arjudin, A., & Hikmah, N. (2021). Aplikasi Persamaan Diferensial Dalam Mengestimasi Jumlah Penduduk dengan Menggunakan Model Eksponensial dan Logistik. Griya Journal of Mathematics Education and Application, 1(1), 44–55. https://doi.org/10.29303/griya.v1i1.7

Stephani, C. A. (2015). Peramalan Inflasi Nasional Berdasarkan Faktor Ekonomi Makro Menggunakan Pendekatan Time Series Klasik dan ANFIS. Sains Dan Seni ITS.

Wijay, A. R. R. (2021). Prediksi Kebutuhan Suku Cadang Menggunakan Integrasi Clustering, Forecasting, Dan Association Rule Berbasis Machine Learning (Studi Kasus Pt Xyz). In Paper Knowledge . Toward a Media History of Documents.


Refbacks

  • There are currently no refbacks.