Forecasting the Number of Poor People in West Nusa Tenggara in 2025-2029: Time Series Analysis with ARIMA Model
Abstract
Keywords
Full Text:
PDFReferences
Adeyinka, D. A., & Muhajarine, N. (2020). Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. BMC Medical Research Methodology, 20(1), 1–11. https://doi.org/10.1186/s12874-020-01159-9
El Keshky, M. E. S., Basyouni, S. S., & Al Sabban, A. M. (2020). Getting Through COVID-19: The Pandemic’s Impact on the Psychology of Sustainability, Quality of Life, and the Global Economy – A Systematic Review. Frontiers in Psychology, 11(November). https://doi.org/10.3389/fpsyg.2020.585897
Gawusu, S., Jamatutu, S. A., & Ahmed, A. (2024). Predictive Modeling of Energy Poverty with Machine Learning Ensembles: Strategic Insights from Socioeconomic Determinants for Effective Policy Implementation. International Journal of Energy Research, 2024. https://doi.org/10.1155/2024/9411326
Hauzan, A., Yulmardi, Y., & Hardiani, H. (2021). Pengaruh pertumbuhan ekonomi, tingkat kemiskinan pengeluaran pemerintah, pengangguran dan pendapatan asli daerah terhadap indeks pembangunan manusia di Provinsi Jambi. E-Jurnal Perspektif Ekonomi Dan Pembangunan Daerah, 10(3), 211–222. https://doi.org/10.22437/pdpd.v10i3.16496
Ibrahim, M., Perwira Negara, H. R., & Syaharuddin, S. (2021). Prediction of Land Area Harvest, Production, Rice Productivity: A Accuracy Analysis of ARIMA Methods. Protech Biosystems Journal, 1(1), 1. https://doi.org/10.31764/protech.v1i1.4776
Insani, A. F., Mushawir, A., Adiaksa, A., Viridi, S., Studi, P., & Komputasi, S. (2025). Optimisation Of Variable Combinations For Household Electricity Consumption Prediction Using a Multivariate Time Series Machine LearningAapproach. 10(1), 87–98.
Ivanda, S. T., & Szs, J. A. (2025). Implementasi Metode Autoregressive Integrated Moving Average Untuk Analisis Peramalan Permintaan Kalibrasi Pada PT XYZ. X(1), 12021–12028.
Kusumawardana, A., & Hidayati, N. (2022). Data Forecasting Model to Know the Social Impact of Poverty in the Era of Globalization in West Java Province, Indonesia. The Es Economics and Entrepreneurship, 1(02), 49–57. https://doi.org/10.58812/esee.v1i02.45
Mizan, S., R, B. D. P., Suriani, N., Mihaimin, R., Laili, N., & Ernita, W. (2019). Peramalan Data Penduduk Miskin Provinsi Nusa Tenggara Barat ( NTB ) Model Auto Regressive Integrated Moving Average ( ARIMA ). Jurnal Pemikiran Dan Penelitian Pendidikan Matematika, 2(1), 1–10.
Nugrahani, I. D., & Risfandy, T. (2022). Jurnal Ilmu Manajemen Markov Switching Autoregressive. 13(November 2021).
Prianda, B. G., & Widodo, E. (2021). Perbandingan Metode Seasonal Arima Dan Extreme Learning Machine Pada Peramalan Jumlah Wisatawan Mancanegara Ke Bali. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 639–650. https://doi.org/10.30598/barekengvol15iss4pp639-650
Studi, K., Peramalan, H., Kemiskinan, G., Diy, M., Azzahra, S. A., Andini, W. N., & Fauzan, A. (2025). The Forecasting Result Study of the Poverty Line and Number of Poor Population in DIY using DES and ARIMA. 21(2), 397–407. https://doi.org/10.20956/j.v21i2.36734
Refbacks
- There are currently no refbacks.