Analisis Peran Machine Learning dalam Kinerja Keuangan Syariah Berbasis SDGs

Kartina Kartina, Nur Fitri Hidayanti, Syaharuddin Syaharuddin, Muhirdan Muhirdan, Mukhlisin Mukhlisin, Ahmad Hulaimi

Abstract


Abstract:  This study aims to analyze the role of machine learning (ML) in enhancing the performance of Islamic finance aligned with the Sustainable Development Goals (SDGs) using a Systematic Literature Review (SLR) approach. The reviewed literature was sourced from internationally reputable databases, including Scopus, DOAJ, and Google Scholar, with a publication time frame spanning 2015–2025. The findings indicate that the integration of ML and digitalization significantly contributes to improved operational efficiency, greater accuracy in decision-making, and strengthened compliance with Sharia principles through automated validation systems and algorithmic oversight. The implementation of these technologies not only accelerates business processes—such as credit risk assessment and transaction detection—but also expands financial inclusion by providing faster, more transparent, and more affordable access to financial services for the broader community. Furthermore, the application of ML in the management of waqf, zakat, and social funds underscores its potential to support socio-economic development and sustainability objectives. However, the study also identifies several challenges, including limitations in Sharia-compliant data infrastructure, high implementation costs, and ethical risks such as algorithmic bias and data security concerns. Therefore, robust regulatory frameworks, well-defined implementation strategies, and further research are required to assess the long-term impact of ML on achieving the SDGs within the context of Islamic finance.
Abstrak: Penelitian ini bertujuan untuk menganalisis peran machine learning (ML) dalam meningkatkan kinerja keuangan syariah berbasis Sustainable Development Goals (SDGs) dengan menggunakan pendekatan Systematic Literature Review (SLR). Literatur yang ditelaah diperoleh dari basis data bereputasi internasional seperti Scopus, DOAJ, dan Google Scholar, dengan batasan tahun publikasi 2015–2025. Hasil kajian menunjukkan bahwa integrasi ML dan digitalisasi berkontribusi signifikan terhadap peningkatan efisiensi operasional, akurasi pengambilan keputusan, serta kepatuhan terhadap prinsip syariah melalui sistem validasi otomatis dan pengawasan algoritmik. Implementasi teknologi ini tidak hanya mempercepat proses bisnis, seperti penilaian risiko kredit dan deteksi transaksi, tetapi juga memperluas inklusi keuangan dengan memberikan akses yang lebih cepat, transparan, dan terjangkau bagi masyarakat. Selain itu, penerapan ML dalam pengelolaan wakaf, zakat, dan dana sosial menegaskan potensinya dalam mendukung pencapaian tujuan sosial-ekonomi dan keberlanjutan. Namun, penelitian juga mengidentifikasi sejumlah tantangan, antara lain keterbatasan infrastruktur data syariah, tingginya biaya implementasi, serta risiko etis seperti bias algoritmik dan keamanan data. Dengan demikian, diperlukan kerangka regulasi yang kuat, strategi implementasi yang tepat, serta penelitian lanjutan untuk menilai dampak jangka panjang ML terhadap pencapaian SDGs dalam konteks keuangan syariah.

Keywords


machine learning, keuangan syariah, digitalisasi, kepatuhan syariah, inklusi keuangan, keberlanjutan, SDGs

Full Text:

PDF

References


Aprilia, M., Setiawan, R. A., & Indra, Y. A. (2024). Optimizing the Potential of Sharia Financial Institutions in Realizing Sustainable Development Goals Optimalisasi Potensi Lembaga Keuangan Syariah Dalam Mewujudkan Sustainable Development Goals. 7.

Azwar, A., & Usman, A. H. (2025). Aligning Indonesia ’ s economic goals with SDGS : Strengthening Qur ’ anic principles in Islamic finance. 11(1), 80–99. https://doi.org/10.20885/JEKI.vol11.iss1.art6

Desky, H., Zulhamdi, Z., & Savitri, A. (2025). The Transformation of Risk Management in Islamic Financial Institutions. Al-Hiwalah : Journal Syariah Economic Law, 4(1), 21–38. https://doi.org/10.47766/al-hiwalah.v4i1.6060

Dewi, S., Yaswirman, Y., Helmi, H., & Henmaidi, H. (2023). Peran Perbankan Syariah dalam Meningkatkan Pembangunan Berkelanjutan di Indonesia. Journal of Tax and Business, 4(2), 229–241. https://doi.org/10.55336/jpb.v4i2.127

Eldo, H., Ayuliana, A., Suryadi, D., Chrisnawati, G., & Judijanto, L. (2024). Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan pada Transaksi Online. Jurnal Minfo Polgan, 13(2), 1627–1632. https://doi.org/10.33395/jmp.v13i2.14186

Elman Nafidzi, & Khabib Musthofa. (2025). Peluang, Strategi, Dan Tantangan Industri Perbankan Syariah Dalam Menghadapi Artificial Intelligence (AI). Journal of International Multidisciplinary Research, 3(2), 68–76. https://doi.org/10.62504/jimr1212

Gafar, G. A., & Wang, G. (2023). Implementation of Machine Learning for Sharia financing Scoring in Indonesian MSME sectors. INNOVATIVE: Journal Of Social Science Research, 3(5), 814–830.

Gao, H., Kou, G., Liang, H., Zhang, H., Chao, X., Li, C. C., & Dong, Y. (2024). Machine learning in business and finance: a literature review and research opportunities. Financial Innovation, 10(1). https://doi.org/10.1186/s40854-024-00629-z

Hakim, L., Prawwatya, N., Huda, C., Fadila, D. F. S., & Rizaldi, M. (2024). The Role of Fintech Lending in Expanding Sharia Financial Inclusion and Human Development in Indonesia. Share: Jurnal Ekonomi Dan Keuangan Islam, 13(1), 299–321. https://doi.org/10.22373/share.v13i1.22548

Harahap, B., Risfandy, T., & Futri, I. N. (2023). Islamic Law, Islamic Finance, and Sustainable Development Goals: A Systematic Literature Review. Sustainability (Switzerland), 15(8). https://doi.org/10.3390/su15086626

Hikam, M., Siswanto, S., & Djalaluddin, A. (2025). Integrating Digital Services in Islamic Social Finance: A Service-Dominant Framework. Share: Jurnal Ekonomi Dan Keuangan Islam, 14(1), 285–318. https://doi.org/10.22373/share.v14i1.25886

Iqbal, M. S., Sukamto, F. A. M. S. B., Norizan, S. N. B., Mahmood, S., Fatima, A., & Hashmi, F. (2025). AI in Islamic finance: Global trends, ethical implications, and bibliometric insights. Review of Islamic Social Finance and Entrepreneurship, 4(1), 70–85. https://doi.org/10.20885/risfe.vol4.iss1.art6

Ismail, M. M., & Haq, M. A. (2024). Enhancing Enterprise Financial Fraud Detection using Machine Learning. Engineering, Technology and Applied Science Research, 14(4), 14854–14861. https://doi.org/10.48084/etasr.7437

Johan, S. (2022). Complementary or Substitute: Sharia Financing, Green Financing, and Sustainable Development Goals? International Journal of Sustainable Development and Planning, 17(2), 487–495. https://doi.org/10.18280/ijsdp.170213

Jokhio, M. N., & Jaffer, M. A. (2024). Generative AI in Shariah Advisory in Islamic Finance: An Experimental Study. Business Review, 19(2), 74–92. https://doi.org/10.54784/1990-6587.1665

Kurnia. (2024). ANALISIS PERAN DAN KONTRIBUSI GREEN SUKUK TERHADAP IMPLEMENTASI SUSTAINABLE DEVELOPMENT GOALS ( SDG ’ S ) DI INDONESIA. X(2), 118–125. https://www.jurnal.umsb.ac.id/index.php/menaraekonomi/article/view/5319

M. Masrukhan, Tessa Arismah Palar, Revina Permata Auli, & Rahma Rizqyna Nur Fazri. (2024). Efektivitas Manajemen Risiko pada Bank Syariah dan Konvensional. Masip: Jurnal Manajemen Administrasi Bisnis Dan Publik Terapan, 2(4), 43–55. https://doi.org/10.59061/masip.v2i4.805

Muhammad Bashri Bas, Rika Febby Rhamadhani, Rasmi Nur Anggraeni, I Putu Edi Darmawan, & Phatra Anggana Djuri. (2025). Artificial Intelligence and Financial Regulation in Indonesia’s Islamic Banking. Paradoks : Jurnal Ilmu Ekonomi, 8(3), 1174–1187. https://doi.org/10.57178/paradoks.v8i3.1519

Muklis, M., Bisri, A., Rahmat, P., & ... (2025). Investasi Syariah sebagai Strategi Pembangunan Masa Depan yang Berkelanjutan: Kajian Konseptual dan Empiris. MAMEN: Jurnal …, 4(3), 511–521. https://doi.org/10.55123/mamen.v4i3.5928

Nailul, M., Mukaromah, C., Atu, A., & Laila, S. (2024). Peran Strategis Keuangan Islam Dalam Pencapaian Target SDGs. Aicief.

Nixon, D. A., & Banna, H. Al. (2025). AI-Enhanced Risk-Return Optimization in Islamic and Conventional Banking Portfolios. EkBis: Jurnal Ekonomi Dan Bisnis, 9(1), 22–36. https://doi.org/10.14421/ekbis.2025.9.1.2414

Omar, M. N., & Sa’ad, A. A. (2024). Exploring the Potential of Artificial Neural Network in Sharīʿah Decision-making for Digital Banking: A Literature Review. TAFHIM: IKIM Journal of Islam and the Contemporary World, 17(2), 105–130. https://doi.org/10.56389/tafhim.vol17no2.5

Permana, R., Syakur, I., Nugroho, A. R., & Kurniawan, B. A. (2024). Analisis Penggunaan Machine Learning untuk Deteksi Penipuan di Sektor Keuangan : Tinjauan Literatur. TEKNOBIS : Teknologi, Bisnis Dan Pendidikan, 2(2), 244–248.

Putra Timur, Y., Ratnasari, R. T., Pitchay, A. A., Jamilu, U., & Surabaya, A. (2023). ZISWAF: Jurnal Zakat dan Wakaf What Do Indonesian Think About Waqf? A Sentiment Analysis Using Machine Learning. 10(1), 98–119.

Rashidi, M. (2013). Deep Learning - Prediksi dan Resiko Investasi Enam Saham Bank di Indonesia. Jurnal Teknologi, 6000(2), 31–39.

Rukmana, A. N., & Siswoyo, B. (2019). Penerapan Linier Discriminant Analysis pada Klasifiksi Distress Binsin Perbankan. ETHOS (Jurnal Penelitian Dan Pengabdian), 7(2), 224–232. https://doi.org/10.29313/ethos.v7i2.4554

Shalhoob, H. (2025). The role of AI in enhancing shariah compliance: Efficiency and transparency in Islamic finance. Journal of Infrastructure, Policy and Development, 9(1), 11239. https://doi.org/10.24294/jipd11239

Siregar, F. N., Khairunnisa, S. Z., Miera, Z. F., & Nurbaiti, N. (2025). Transformasi Digital Dalam Sistem Informasi Perbankan Syariah. ECONOMIST: Jurnal Ekonomi Dan Bisnis, 2(1), 60–68. https://doi.org/10.63545/economist.v2i1.81

Sudarmanto, E., Yuliana, I., Wahyuni, N., Yusuf, S. R., & Zaki, A. (2024). Transformasi Digital dalam Keuangan Islam: Peluang dan Tantangan. Jurnal Ilmiah Ekonomi Islam, 10(1), 645. https://doi.org/10.29040/jiei.v10i1.11628

Sukma, E., Risdayani, N., & Hendra, J. (2025). Peran Digitalisasi Dalam Meningkatkan Efektivitas Manajemen Risiko Lembaga Keuangan Syariah. Journal of Business Inflation Management and Accounting, 2(1), 41–48. https://doi.org/10.57235/bima.v2i1.4528

Sulistyowati, Rahayu, Y. S., & Naja, C. D. (2023). Penerapan Artificial Intelligence Sebagai Inovasi Di Era Disrupsi Dalam Mengurangi Resiko Lembaga Keuangan Mikro Syariah. Wadiah, 7(2), 117–142. https://doi.org/10.30762/wadiah.v7i2.329

Supérieure, É. (2016). Peran Perbankan Syariah dalam Meningkatkan Pembangunan Berkelanjutan di Indonesia. d(6), 1–23.

Vourganas, I. J., & Michala, A. L. (2024). Applications of Machine Learning in Cyber Security: A Review. Journal of Cybersecurity and Privacy, 4(4), 972–992. https://doi.org/10.3390/jcp4040045

Widjaja, G. (2024). the Role of Big Data Analysis in Financial Decision Making: the Case of Islamic Banking. Februari, 2(2), 264–276.

Yang, Q., & Lee, Y. C. (2024). Ethical AI in Financial Inclusion: The Role of Algorithmic Fairness on User Satisfaction and Recommendation. Big Data and Cognitive Computing, 8(9). https://doi.org/10.3390/bdcc8090105

Yuli Pratiwi, E., Zuriyatul Haq, A., & Dextra Daufa, Z. (2024). Ai Dalam Manajemen Risiko Untuk Membangun Keputusan Keuangan Yang Lebih Baik. JATI (Jurnal Mahasiswa Teknik Informatika), 9(1), 999–1004. https://doi.org/10.36040/jati.v9i1.12553

Zen, N. H., & Mageiasti, L. (2025). Analisis Penerapan Sdgs Dalam Pembangunan Berkelanjutan Di Indonesia : Tinjauan Literatur Dan Tantangan Implementasi. Gudang Jurnal Multidisiplin Ilmu, 3, 775–785.


Refbacks

  • There are currently no refbacks.