Analisa Kestabilan dan Solusi Pendekatan Pada Persamaan Van der Pol

Yuni Yulida, Muhammad Ahsar Karim

Abstract


Abstrak: Di dalam tulisan ini disajikan analisa kestabilan, diselidiki eksistensi dan kestabilan limit cycle, dan ditentukan solusi pendekatan dengan menggunakan metode multiple scale dari persamaan Van der Pol. Penelitian ini dilakukan dalam tiga tahapan metode. Pertama, menganalisa perilaku dinamik persamaan Van der Pol di sekitar ekuilibrium, meliputi transformasi persamaan ke sistem persamaan, analisa kestabilan persamaan melalui linearisasi, dan analisa kemungkinan terjadinya bifukasi pada persamaan. Kedua, membuktikan eksistensi dan kestabilan limit cycle dari persamaan Van der Pol dengan menggunakan teorema Lienard. Ketiga, menentukan solusi pendekatan dari persamaan Van der Pol dengan menggunakan metode multiple scale. Hasil penelitian adalah, berdasarkan variasi nilai parameter kekuatan redaman, daerah kestabilan dari persamaan Van der Pol terbagi menjadi tiga. Untuk parameter kekuatan redaman bernilai positif mengakibatkan ekuilibrium tidak stabil, dan sebaliknya, untuk parameter kekuatan redaman bernilai negatif mengakibatkan ekuilibrium stabil asimtotik, serta tanpa kekuatan redaman mengakibatkan ekuilibrium stabil. Pada kondisi tanpa kekuatan redaman, persamaan Van der Pol memiliki solusi periodik dan mengalami bifurkasi hopf. Selain itu, dengan menggunakan teorema Lienard dapat dibuktikan bahwa solusi periodik dari persamaan Van der Pol berupa limit cycle yang stabil. Pada akhirnya, dengan menggunakan metode multiple scale dan memberikan variasi nilai amplitudo awal dapat ditunjukkan bahwa solusi persamaan Van der Pol konvergen ke solusi periodik dengan periode dua.

 

Abstract: In this paper, the stability analysis is given, the existence and stability of the limit cycle are investigated, and the approach solution is determined using the multiple scale method of the Van der Pol equation. This research was conducted in three stages of method. First, analyzing the dynamic behavior of the equation around the equilibrium, including the transformation of equations into a system of equations, analysis of the stability of equations through linearization, and analysis of the possibility of bifurcation of the equations. Second, the existence and stability of the limit cycle of the equation are proved using the Lienard theorem. Third, the approach solution of the Van der Pol equation is determined using the multiple scale method. Our results, based on variations in the values of the damping strength parameters, the stability region of the Van der Pol equation is divided into three types. For the positive value, it is resulting in unstable equilibrium, and contrary, for the negative value, it is resulting in asymptotic stable equilibrium, and without the damping force, it is resulting in stable equilibrium. In conditions without damping force, the Van der Pol equation has a periodic solution and has hopf bifurcation. In addition, by using the Lienard theorem, it is proven that the periodic solution is a stable limit cycle. Finally, by using the multiple scale method with varying the initial amplitude values, it is shown that the solution of the Van der Pol equation is converge to a periodic solution with a period of two.

Keywords


Persamaan Van der Pol; Ekuilibrium; Analisa Kestabilan; Limit Cycle; Solusi Periodik; Multiple Scale. Van der Pol Equation; Equilibrium; Stability Analysis; Limit Cycle; Periodic Solution; Multiple Scale.

Full Text:

PDF

References


Aybar, O. O., Kusbeyzi Aybar, I., & Hacinliyan, A. S. (2013). Bifurcations in Van der Pol-like systems. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/138430

Bajaj, V., & Prakash, N. (2013). Non Linear Oscillator Systems and Solving Techniques. Int. Journal of Scientific and Research Publications, 3(5), 1–9.

Brauer, F., & Castillo-Chavez, C. (2010). Mathematical Models in Population Biology and Epidemiology. New York: Springer.

Cheng, D., & et al. (2010). Linearization of Nonlinear Systems. Berlin Heidelberg: Science Press Beijing and Springer-Verlag.

Cordshooli, G. A., & Vahidi, A. R. (2011). Solutions of Duffing - van der Pol equation using decomposition method. Advanced Studies in Theoretical Physics, 5(1-4), 121–129.

Hellevik, K., & Gudmestad, O. T. (2017). Limit cycle oscillations at resonances. IOP Conference Series: Materials Science and Engineering, 276(1). https://doi.org/10.1088/1757-899X/276/1/012020

Hosseini, S., Babolian, E., & Abbasbandy, S. (2016). A New Algorithm for Solving Van der Pol Equation Based on Piecewise Spectral Adomian Decomposition Method. Int. Journal Industrial Mathematics, 8(3), 177–184.

Jacobsen, P. K. (2013). Introduction to the Method of Multiple Scales. UiT The Arctic University of Norway.

Karim, M. . (2019). Estimasi Parameter Pada Persamaan Diferensial Biasa Fuzzy. Institut Teknologi Bandung.

Kuehn, C. (2015). Multiple Time Scale Dynamics. Applied Mathematical Sciences (Switzerland), 191, 1–814. https://doi.org/10.1007/978-3-319-12316-5

Low, P. S., Ramlan, R., Muhammad, N. S., & Ghani, H. A. (2016). Comparison of harmonic balance and multiple scale method on degree of nonlinearity for duffing oscillator. ARPN Journal of Engineering and Applied Sciences, 11(8), 5314–5319.

Mazarei, M. M., Behroozpoor, A. A., & Kamyad, A. V. (2014). The Best Piecewise Linearization of Nonlinear Functions. Applied Mathematics, 05(20), 3270–3276. https://doi.org/10.4236/am.2014.520305

Rigatos, G., Siano, P., Wira, P., Abbaszadeh, M., & Zouari, F. (2018). Nonlinear H-infinity control for optimization of the functioning of mining products mills. Proceedings: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2367–2372. https://doi.org/10.1109/IECON.2018.8592736

Taylor, M. R., & Bhathawala, P. H. (2012). Linearization of Nonlinear Differential Equation by Taylor’s Series Expansion and Use of Jacobian Linearization Process. International Journal of Theoretical and Applied Science, 4(1), 36–38.

Vaidyanathan, S. (2015). Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. International Journal of PharmTech Research, 8(6), 106–116.

Yulida, Y., & Karim, M. A. (2019). Perbandingan Solusi Persamaan Van der Pol Menggunakan Metode Multiple Scale dan Metode Kryloff dan Bogoliuboff. Seminar Dan Rapat Tahunan BKS PTN Wilayah Barat Bidang MIPA (SEMIRATA). Universitas Bengkulu, Bengkulu.




DOI: https://doi.org/10.31764/jtam.v3i2.1084

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Teori dan Aplikasi Matematika (JTAM)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: