COVID-19 Predictions Using Regression Growth Model in Ireland and Israel
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Anastassopoulou, C., Russo, L., Tsakris, A., & Siettos, C. (2020). Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLOS ONE, 15(3), e0230405. https://doi.org/10.1371/journal.pone.0230405
Bailey, N. T. (1975). The mathematical theory of infectious diseases and its applications.
Barbarossa, M. V., Dénes, A., Kiss, G., Nakata, Y., Röst, G., & Vizi, Z. (2015). Transmission Dynamics and Final Epidemic Size of Ebola Virus Disease Outbreaks with Varying Interventions. PLOS ONE, 10(7), e0131398. https://doi.org/10.1371/journal.pone.0131398
Batista, M. (2020). Estimation of the final size of the coronavirus epidemic by the logistic model. https://doi.org/10.1101/2020.02.16.20023606
Bohner, M., Streipert, S., & Torres, D. F. M. (2019). Exact solution to a dynamic SIR model. Nonlinear Analysis: Hybrid Systems, 32, 228–238. https://doi.org/10.1016/j.nahs.2018.12.005
Brauer, F. (2019). The Final Size of a Serious Epidemic. Bulletin of Mathematical Biology, 81(3), 869–877. https://doi.org/10.1007/s11538-018-00549-x
Coronavirus worldometer website. https://www.worldometers.info/ coronavirus/. (n.d.).
Danby, & John Michael Anthony. (1985). Computing applications to differential equations: Modelling in the physical and social sciences. Prentice Hall.
Haberman, R., & Kolkka, R. W. (1977). Mathematical Models. Journal of Dynamic Systems, Measurement, and Control, 99(3), 219–219. https://doi.org/10.1115/1.3427107
Harko, T., Lobo, F. S. N., & Mak, M. K. (2014). Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation, 236, 184–194. https://doi.org/10.1016/j.amc.2014.03.030
Ma, J. (2020). Estimating epidemic exponential growth rate and basic reproduction number. Infectious Disease Modelling, 5, 129–141. https://doi.org/10.1016/j.idm.2019.12.009
Maliki, S. O. (2011). Analysis of Numerical and Exact solutions of certain SIR and SIS Epidemic models. Journal of Mathematical Modelling and Application, 1(4), 51–56.
Miller, J. C. (2012). A Note on the Derivation of Epidemic Final Sizes. Bulletin of Mathematical Biology, 74(9), 2125–2141. https://doi.org/10.1007/s11538-012-9749-6
Nesteruk, I. (2020). Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China. Innovative Biosystems and Bioengineering, 4(1), 13–18. https://doi.org/10.20535/ibb.2020.4.1.195074
Pell, B., Kuang, Y., Viboud, C., & Chowell, G. (2018a). Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 22, 62–70. https://doi.org/10.1016/j.epidem.2016.11.002
Pell, B., Kuang, Y., Viboud, C., & Chowell, G. (2018b). Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 22, 62–70. https://doi.org/10.1016/j.epidem.2016.11.002
Read, J. M., Bridgen, J. R. E., Cummings, D. A. T., Ho, A., & Jewell, C. P. (2021). Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1829). https://doi.org/10.1098/rstb.2020.0265
Shabbir, G., Khan, H., & Sadiq, M. A. (2010). A note on Exact solution of SIR and SIS epidemic models.
Shanks, D. (1955). Non-linear Transformations of Divergent and Slowly Convergent Sequences. Journal of Mathematics and Physics, 34(1–4), 1–42. https://doi.org/10.1002/sapm19553411
Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
William Ogilvy Kermack and A. G. McKendrick. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772), 700–721. https://doi.org/10.1098/rspa.1927.0118
Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 395(10225), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9
Xiong, H., & Yan, H. (2020). Simulating the infected population and spread trend of 2019-nCov under different policy by EIR model. https://doi.org/10.1101/2020.02.10.20021519
Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91–95. https://doi.org/10.1016/j.ijid.2020.03.017
DOI: https://doi.org/10.31764/jtam.v6i4.10944
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Wasim Raza, Dieky Adzkiya, Subchan, Saba Mehmood
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: