The Solution of Generalization of the First and Second Kind of Abel’s Integral Equation

Muhammad Taufik Abdillah, Berlian Setiawaty, Sugi Guritman

Abstract


Integral equations are equations in which the unknown function is found to be inside the integral sign. N. H. Abel used the integral equation to analyze the relationship between kinetic energy and potential energy in a falling object, expressed by two integral equations. This integral equation is called Abel's integral equation. Furthermore, these equations are developed to produce generalizations and further generalizations for each equation. This study aims to explain generalizations of the first and second kind of Abel’s integral equations, and to find solution for each equation. The method used to determine the solution of the equation is an analytical method, which includes Laplace transform, fractional calculus, and manipulation of equation. When the analytical approach cannot solve the equation, the solution will be determined by a numerical method, namely successive approximations. The results showed that the generalization of the first kind of Abel’s integral equation solution can be determined using the Laplace transform method, fractional calculus, and manipulation of equation. On the other hand, the generalization of the second kind of Abel’s integral equation solution is obtained from the Laplace transform method. Further generalization of the first kind of Abel’s integral equation solution can be obtained using manipulation of equation method. Further generalization of the second kind of Abel’s integral equation solution cannot be determined by analytical method, so a numerical method (successive approximations) is used. 


Keywords


Fractional calculus; Generalization of Abel’s integral equation; Laplace transform; Successive approximations.

Full Text:

DOWNLOAD [PDF]

References


Abdullah, J. T., Naseer, B. S., & Abdllrazak, B. T. (2021). Numerical solutions of Abel integral equations via touchard and laguerre polynomials. International Journal of Nonlinear Analysis and Applications, 12(2), 1599–1609. https://doi.org/10.22075/IJNAA.2021.5290

Aggarwal, S., & Sharma, N. (2019). Laplace Transform for the Solution of First Kind Linear Volterra Integral Equation. Journal of Advanced Research in Applied Mathematics and Statistics, 4(3&4), 16–23. https://orcid.org/0000-0002-3887-3443

Ahmad, A. (2021). Numerical Solution of Mixed Linear Volterra-Fredholm Integral Equations By Modified Block Pulse Functions. Jurnal Riset Dan Aplikasi Matematika (JRAM), 5(1), 1–9. https://doi.org/10.26740/jram.v5n1.p1-9

Al-Gonah, A., Mohammed, W. K., & Al-Gonah, A. A. (2018). A New Extension of Extended Gamma and Beta Functions and their Properties. Journal of Scientific and Engineering Research, 5(9), 257–270. https://www.researchgate.net/publication/328233311

Bairwa, R. K., Kumar, A., & Kumar, D. (2020). An efficient computation approach for Abel’s integral equations of the second kind. Science and Technology Asia, 25(1), 85–94. https://doi.org/10.14456/scitechasia.2020.9

Cuha, F. A., & Peker, H. A. (2022). Solution Of Abel’s Integral Equation By Kashuri Fundo Transform. Thermal Science, 26(4), 3003–3010. https://doi.org/10.2298/TSCI2204003C

Debnath, L. (2016). The Double Laplace Transforms and Their Properties with Applications to Functional, Integral and Partial Differential Equations. International Journal of Applied and Computational Mathematics, 2(2), 223–241. https://doi.org/10.1007/s40819-015-0057-3

Dehbozorgi, R., & Nedaiasl, K. (2020). Numerical Solution of Nonlinear Abel Integral Equations: An hp-Version Collocation Approach. Numerical Analysis. 161(210714182). 111–136. http://arxiv.org/abs/2001.06240

Delkhosh, M. (2013). Introduction of Derivatives and Integrals of Fractional Order and Its Applications. Applied Mathematics and Physics, 1(4), 103–119. https://doi.org/10.12691/amp-1-4-3

Goyal, R., Momani, S., Agarwal, P., & Rassias, M. T. (2021). An extension of beta function by using wiman’s function. Axioms, 10(3), 1–11. https://doi.org/10.3390/axioms10030187

Jahanshahi, S., Babolian, E., Torres, D. F. M., & Vahidi, A. (2015). Solving Abel integral equations of first kind via fractional calculus. Journal of King Saud University - Science, 27(2), 161–167. https://doi.org/10.1016/j.jksus.2014.09.004

Kanwal, R. P. (2013). Method of Successive Approximations. In Linear Integral Equations (pp. 25–40). Springer New York. https://doi.org/10.1007/978-1-4614-6012-1_3

Kumar, S., Kumar, A., Kumar, D., Singh, J., & Singh, A. (2015). Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. Journal of the Egyptian Mathematical Society, 23(1), 102–107. https://doi.org/10.1016/j.joems.2014.02.004

Li, C., Humphries, T., & Plowman, H. (2018). Solutions to Abel’s integral equations in distributions. Axioms, 7(3), 28–42. https://doi.org/10.3390/axioms7030066

Li, M., & Zhao, W. (2013). Solving Abel’s type integral equation with Mikusinski’s operator of fractional order. Advances in Mathematical Physics, 2013(806984), 1–4. https://doi.org/10.1155/2013/806984

Merk, S., Demidov, A., Shelby, D., Gornushkin, I. B., Panne, U., Smith, B. W., & Omenetto, N. (2013). Diagnostic of laser-induced plasma using abel inversion and radiation modeling. Applied Spectroscopy, 67(8), 851–859. https://doi.org/10.1366/12-06929

Mundewadi, R. A. (2019). Numerical Method for the Solution of Abel ’ s Integral Equations using Laguerre Wavelet. Journal of Information and Computing Science, 14(4), 250-258. https://doi.org/10.1155/2019/ 220631707

Saha Ray, S., & Sahu, P. K. (2013). Numerical methods for solving fredholm integral equations of second kind. Abstract and Applied Analysis, 2013(426916), 1-17. https://doi.org/10.1155/2013/426916

Saif, M., Khan, F., Nisar, K. S., & Araci, S. (2020). Modified laplace transform and its properties. Journal of Mathematics and Computer Science, 21(2), 127–135. https://doi.org/10.22436/jmcs.021.02.04

Salah, J. Y. (2015). A Note on Gamma Function. Journal of Modern Sciences and Enginering Technology, 2(8), 58–64. https://doi.org/10.1017/S0950184300003207

Sattaso, S., Nonlaopon, K., Kim, H., & Al-Omari, S. (2023). Certain Solutions of Abel’s Integral Equations on Distribution Spaces via Distributional Gα-Transform. Symmetry, 15(1), 1–12. https://doi.org/10.3390/sym15010053

Senel, A. A., Öztürk, Y., & Gülsu, M. (2021). New Numerical Approach for Solving Abel’s Integral Equations. Foundations of Computing and Decision Sciences, 46(3), 255–271. https://doi.org/10.2478/fcds-2021-0017

Singh, C. S., Singh, H., Singh, S., & Kumar, D. (2019). An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics. Physica A: Statistical Mechanics and Its Applications, 525(1), 1440–1448. https://doi.org/10.1016/j.physa.2019.03.085

Thórisdóttir, O., & Kiderlen, M. (2013). Wicksell’s problem in local stereology. Advances in Applied Probability, 45(4), 925–944. https://doi.org/10.1239/aap/1386857851

Wang, J., Zhu, C., & Fečkan, M. (2014). Analysis of Abel-type nonlinear integral equations with weakly singular kernels. Boundary Value Problems, 2014(20), 1–16. https://doi.org/10.1186/1687-2770-2014-20

Wang, Y., & Chen, G. (2019). A Formal Proof of Two Properties of Laplace Transform. Proceedings of 2018 IEEE International Conference of Safety Produce Informatization, IICSPI 2018(188), 883–887. https://doi.org/10.1109/IICSPI.2018.8690475

Yang, C. (2014). An efficient numerical method for solving Abel integral equation. Applied Mathematics and Computation, 227(1), 656–661. https://doi.org/10.1016/j.amc.2013.11.041

Ziada, E. (2021). Analytical solution of Abel integral equation. Nile Journal of Basic Science, 1(1), 49–53. https://doi.org/10.21608/njbs.2021.202772




DOI: https://doi.org/10.31764/jtam.v7i3.14193

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Muhammad Taufik Abdillah, Berlian Setiawaty, Sugi Guritman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: