Confidence Interval for Variance Function of a Compound Periodic Poisson Process with a Power Function Trend
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Acuña-ureta, D. E., Orchard, M. E., & Wheeler, P. (2021). Computation of Time Probability Distributions for the Occurrence of Uncertain Future Events. Mechanical Systems and Signal Processing, 150(9), 107332. https://doi.org/10.1016/j.ymssp.2020.107332
Barbier, E. B., Georgiou, I. Y., Enchelmeyer, B., & Reed, D. J. (2013). The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges. PLos ONE, 8(3), 1–6. https://doi.org/10.1371/journal.pone.0058715
Belitser, E., Serra, P., & Zanten, H. V. A. N. (2012). Estimating the Period of a Cyclic Non-Homogeneous Poisson Process. The Scandinavian Journal of Statistics, 1982, 204–218. https://doi.org/10.1111/j.1467-9469.2012.00806.x
Crescenzo, A. Di, Martinucci, B., & Shelemyahu Zacks. (2015). Compound Poisson Process with a Poisson Subordinator. Journal of Applied Probability, 52(2), 360–374. https://doi.org/10.1239/jap/1437658603
Engle, R. (2000). The Econometrics of Ultra-High-Frequency Data. Econometrica, 68(1), 1–22. https://doi.org/10.1111/1468-0262.00091
Fajri, A., Mangku, I., & Sumarno, H. (2022). Kajian Penduga Fungsi Ragam Proses Poisson. MILANG, 18(2), 87–97. https://doi.org/10.29244/milang.18.2.87-97
Ghahramani, S. (2016). Fundamental of Probability (3rd ed.). Florida: CRC Press Taylor & Francis Group.
Hogg, R. V., McKean, J. W., & Allen T. Craig. (2019). Introduction to Mathematical Statistics (7th ed.). New Jersey (US): Prentice Hall.
Kruczek, P., Polak, M., Wyłomańska, A., & Kawalec, W. (2017). Application of Compound Poisson Process for Modelling of ore Flow in a Belt Conveyor System with Cyclic Loading. International Journal of Mining, Reclamation and Environment, 0930(11), 1–16. https://doi.org/10.1080/17480930.2017.1388335
Last, G., & Penrose, M. (2018). Lectures on the Poisson Process. New York: Sheridan Books, Inc.
Li, C., Zhong, S. J., Wang, L., Su, W., & C Fang. (2014). Waiting Time Distribution of Solar Energetic Particle Events Modeled with Non-stationary Poisson Process. The Astrophysical Jurnal Letters, 792(2), 121–124. https://doi.org/10.1088/2041-8205/792/2/L26
Makhmudah, F., Mangku, I., & Sumarno, H. (2016). Estimating The Variance Function of a Compound Cyclic Poisson Process. Far East Journal of Mathematics Sciences, 100(6), 911–922. https://doi.org/dx.doi.org/10.17654/MS100060911
Mangku, I. W. (2021). Proses Stokastik Dasar. Bogor: IPB Press.
Mangku, I. W., Ruhiyat, & Purnaba, I. G. P. (2013). Statistics Properties of an Estimator for the Mean Function of a Compound Cyclic Poisson Process. Far East Journal of Mathematical Sciences, 82(2), 227–237.
Muhamad, F., Mangku, I. W., & Silalahi, B. P. (2022). Confidence Intervals for the Mean Function of a Compound Cyclic Poisson Process in the Presence of Power Function Trend. CAUCHY-Jurnal Matematika Murni Dan Aplikasi, 7(3), 411–419. https://doi.org/10.18860/ca.v7i3.15989
Ngailo, T., Shaban, N., Reuder, J., Rutalebwa, E., & Mugume, I. (2016). Non Homogeneous Poisson Process Modelling of Seasonal Extreme Rainfall Events in Tanzania. International Journal of Science and Research, 5(10), 1858–1868. https://doi.org/10.21275/ART20162322
Nosova, M. (2019). Research of a three-phase autonomous queuing system with a Markov Modulated Poisson process. Researchgate.Net, January. www.researchgate.net/publication/330116702
Ross, S. M. (2014). Introduction to Probability Models (11st ed.). Orlando, Florida: Academic Press Inc. https://doi.org/10.1016/c2013-0-11417-1
Ruhiyat, R., Mangku, I., & Sumarno, H. (2013). Consistent Estimation of the Mean Function of a Compound Cyclic Poisson Process. Far East J. Math. Sci., 77(2), 183–194.
Sakthivel, K. M., & Rajitha, C. S. (2017). Artificial Intelligence for Estimation of Future Claim Frequency in Non-Life Insurance. Global Journal of Pure and Applied Mathematics, 13(6), 1701–1710. www.ripublication.com/gjpam17/gjpamv13n6_19.pdf
Shao, N., & Lii, K. (2011). Modelling non-homogeneous Poisson processes with Almost Periodic Intensity Functions. Journal of The Royal Statistical Society, 73(1), 99–122. https://doi.org/10.1111/j.1467-9868.2010.00758.x
Tse, K. (2014). Some Applications of the Poisson Process. Applied Mathematics, 05(19), 3011–3017. https://doi.org/10.4236/am.2014.519288
Utama, M. W., Mangku, I. W., & Silalahi, B. P. (2022). Asymptotic Distribution of an Estimator for Variance Function of a Compound Periodic Poisson Process with Power Function Trend. Jurnal Teori Dan Aplikasi Matematika, 6(4), 1081–1095. https://doi.org/10.31764/jtam.v6i4.10213
Zhang, H., Liu, Y., & Li, B. (2014). Notes on Discrete Compound Poisson Model with Applications to Risk Theory. Insurance: Mathematics and Economics, 59, 325–336. https://doi.org/10.1016/j.insmatheco.2014.09.012
DOI: https://doi.org/10.31764/jtam.v7i3.14836
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ade Irawan, I Wayan Mangku, Retno Budiarti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: