Local Partition Dimension of Grid Graph and Its Application to the Coordinates of Potential Disaster Areas in Jember Regency

Ilham Saifudin, Reni Umilasari, Nanang Saiful Rizal

Abstract


Partition dimension was introduced as a part of interesting topic in graph theory. It was focus to observe about distance. The local partition dimension is an expansion of the partition dimension by adding certain conditions to the representation of the vertices 𝑣 to which is Π denoted by 𝑟(𝑣| Π). One of the conditions that must be met for 𝑟(𝑣| Π) is discussed. The minimum value of k so that there is a local distinguishing partition from V (G) is the local partition dimension of G or it can can be said that the distance of each neighbor is different. The local partition dimension of a graph G is denoted 〖pd〗_l (G). In this study, we used an axiomatic deductive methods and pattern recognition. In order to construct the discriminating set on the metric dimension (dim)  and the discriminating partition on the partition dimension (pd), the pattern detection method looks for patterns in which the coordinate values are minimum and different. By all observations, the local partition dimensions of  P_n×P_m Grid graph has two condition about the results of resolving partition. The Result of local partition dimension of a Grid graph 〖〖pd〗_l (P〗_n×P_m)=2, where n≥2 dan m≥2. In addition, it will decide how to convert the coordinates of areas in the Jember district that are prone to flooding and landslides into metric dimensions. It was about Coordinates of Flood and Landslide Disaster Locations in Jember Regency. The number of local and minimal partition sets generated for flood-prone areas in Jember Regency is 〖pd〗_l (G_Jember)=3.

Keywords


Distinguishing Sets; Local Partition Dimensions; Coordinates of Potential Disaster Areas.

Full Text:

DOWNLOAD [PDF]

References


Arimbawa, K. I. B. K. P., & Baskoro, E. T. (2015). Partition Dimension of Some Classes of Trees. Procedia Computer Science, 74, 67–72. https://doi.org/10.1016/j.procs.2015.12.077

Badawi, A. (2014). On the Annihilator Graph of a Commutative Ring. Communications in Algebra, 42(1), 108–121. https://doi.org/10.1080/00927872.2012.707262

Badawi, A. (2017). Recent results on the annihilator graph of a commutative ring: A survey. Nearrings, Nearfields and Related Topics, 170–184. https://doi.org/10.1142/9789813207363_0017

Badawi, A., & Rissner, R. (2020). Ramsey numbers of partial order graphs (comparability graphs) and implications in ring theory. Open Mathematics, 18(1), 1645–1657. https://doi.org/10.1515/math-2020-0085

Budianto, W. T., & Kusmayadi, T. A. (2018). The local metric dimension of starbarbell graph, Km ⊙ Pn graph, and Möbius ladder graph. Journal of Physics: Conference Series, 1008(1). https://doi.org/10.1088/1742-6596/1008/1/012050

Cahyabudi, A. N., & Kusmayadi, T. A. (2017). On the local metric dimension of a lollipop graph, a web graph, and a friendship graph. Journal of Physics: Conference Series, 909(1). https://doi.org/10.1088/1742-6596/909/1/012039

Chartrand, G., & Lesniak, L. (1996). Graphs & Digraphs (3rd ed). New York: Chapman & Hall/CRC, inc.

CNN, I. (2021). Banjir Terjang 4 Kecamatan di Jember, Ratusan Warga Mengungsi. Retrieved November 23, 2021, from https://www.cnnindonesia.com/nasional/20211110221901-20-719443/banjir-terjang-4-kecamatan-di-jember-ratusan-warga-mengungsi

Faizana, F., Nugraha, A., & Yuwono, B. (2015). Pemetaan Risiko Bencana Tanah Longsor Kota Semarang. Jurnal Geodesi Undip, 4(1), 223–234. https://doi.org/10.14710/jgundip.2015.7669

Fransiskus Fran, A. K. E. N. (2020). Dimensi Partisi Pada Graf. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya, 9(1), 189–194. https://doi.org/10.26418/bbimst.v9i1.38818

Fredlina, K. Q., & Baskoro, E. T. (2015). The Partition Dimension of Some Families of Trees. Procedia Computer Science, 74, 60–66. https://doi.org/10.1016/j.procs.2015.12.076

Klavžar, S., & Tavakoli, M. (2020). Local metric dimension of graphs: Generalized hierarchical products and some applications. Applied Mathematics and Computation, 364, 1–14. https://doi.org/10.1016/j.amc.2019.124676

Kuziak, D., Rodriguez-Velazquez, J. A., & Yero, I. G. (2017). Computing the metric dimension of a graph from primary subgraphs. Discussiones Mathematicae - Graph Theory, 37(1), 273–293. https://doi.org/10.7151/dmgt.1934

Lestari, R. W., Kanedi, I., & Arliando, Y. (2016). Sistem Informasi Geografis (Sig) Daerah Rawan Banjir Di Kota Bengkulu Menggunakan Arcview. Jurnal Media Infotama, 12(1), 41–48. https://doi.org/10.37676/jmi.v12i1.271

Okamoto, F., Phinezy, B., & Zhang, P. (2010). The local metric dimension of a graph. Mathematica Bohemica, 135(3), 239–255. https://doi.org/10.21136/mb.2010.140702

Putri, D. R., & Sarifuddin. (2019). Tingkat Kerentanan Masyarakat Terhadap-semarang. Jurnal Pengembangan Kota, 3(2), 10.semarang. Jurnal Pengembangan Kota, 3(2), 10. http://dx.doi.org/10.14710/jpk.3.2.90-99

Rinurwati, Suprajitno, H., & Slamin. (2017). On local adjacency metric dimension of some wheel related graphs with pendant points. AIP Conference Proceedings, 1867. https://doi.org/10.1063/1.4994468

Riza, R. (2016). Dimensi Partisi Graf Gir. Jurnal Matematika UNAND, 1(2), 21. https://doi.org/10.25077/jmu.1.2.21-27.2012

Rodríguez-Velázquez, J. A., Barragán-Ramírez, G. A., & García Gómez, C. (2016). On the Local Metric Dimension of Corona Product Graphs. Bulletin of the Malaysian Mathematical Sciences Society, 39, 157–173. https://doi.org/10.1007/s40840-015-0283-1

Rodríguez-Velázquez, J. A., García Gómez, C., & Barragán-Ramírez, G. A. (2015). Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs. International Journal of Computer Mathematics, 92(4), 686–693. https://doi.org/10.1080/00207160.2014.918608

Rodríguez-Velázquez, J. A., González Yero, I., & Lemańska, M. (2014). On the partition dimension of trees. Discrete Applied Mathematics, 166, 204–209. https://doi.org/https://doi.org/10.1016/j.dam.2013.09.026

Saifudin, I., & Umilasari, R. (2021). Automatic Aircraft Navigation Using Star Metric Dimension Theory in Fire Protected Forest Areas, 5(2), 294–304. https://doi.org/10.31764/jtam.v5i2.4331

Saifudin, I., Umilasari, R., & Jalil, A. (2022). Metric dimension of vertex shackle operation result graph on wheel and star graphs. Journal of Physics: Conference Series, 2279(1). https://doi.org/10.1088/1742-6596/2279/1/012010

Slamin. (2009). Desain Jaringan: Pendekatan Teori Graf. Jember: University Press.

Yi, E. (2013). On strong metric dimension of graphs and their complements. Acta Mathematica Sinica, English Series, 29(8), 1479–1492. https://doi.org/10.1007/s10114-013-2365-z




DOI: https://doi.org/10.31764/jtam.v7i4.15798

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ilham Saifudin, Reni Umilasari, Nanang Saiful Rizal

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: