Modeling and Analysis of the Dynamic Model of Bali Starling (Leucopsar Rothschildi) Breeding in West Bali National Park

G. K. Gandhiadi, Ketut Jayanegara, Komang Dharmawan

Abstract


Antara, the official news agency of the state, reported a record-breaking population of 303 Bali starlings in the West Bali National Park (WBNP) in June 2020, attributing this achievement to the park's captive reproduction initiative. This paper presents a study on the dynamic equilibrium of Bali Starlings and proposes a mathematical model for analyzing this dynamic. The research also examines parameters ensuring the stability of the captive breeding model for Bali starlings in WBNP in a sustainable manner. The Bali starlings are categorized into two groups: those in the wild and those in captive breeding, with hatched eggs in captivity included in the latter. The dynamic model is analyzed for system stability around the endemic critical point using the Routh-Hurwitz stability criteria. As an illustrative example, a simulation is conducted to assess the model's suitability under real field conditions. The model analysis reveals that the existence of an endemic critical point can be maintained if the percentage of stolen Bali starlings or eggs reintroduced to the wild is less than the difference between the percentage of Bali starlings laying eggs and the population growth rate in WBNP. Furthermore, the stability of the endemic critical point is confirmed as long as the percentage of Bali starlings laying eggs exceeds the population growth rate. This dynamic model offers a valuable tool for evaluating the sustainability of Bali starling breeding programs and optimizing the benefits associated with their conservation efforts.

 

 


Keywords


Bali Starling; Compartment of Dynamics; Endemic Critical Point; Stability of Dynamic Model.

Full Text:

DOWNLOAD [PDF]

References


Abrahams, C., & Geary, M. (2020). Combining bioacoustics and occupancy modelling for improved monitoring of rare breeding bird populations. Ecological Indicators, 112, 106131. https://doi.org/10.1016/j.ecolind.2020.106131

Amini Tehrani, N., Naimi, B., & Jaboyedoff, M. (2021). Modeling current and future species distribution of breeding birds as regional essential biodiversity variables (SD EBVs): A bird perspective in Swiss Alps. Global Ecology and Conservation, 27, e01596. https://doi.org/10.1016/j.gecco.2021.e01596

Ardhana, I. P. G., & Rukmana, N. (2017). Keberadaan Jalak Bali (Leucopsar rothschildi Stresemann 1912) di Taman Nasional Bali Barat. SIMBIOSIS, 1. https://doi.org/10.24843/JSIMBIOSIS.2017.v05.i01.p01

Callaghan, C. T., Watson, J. E. M., Lyons, M. B., Cornwell, W. K., & Fuller, R. A. (2021). Conservation birding: A quantitative conceptual framework for prioritizing citizen science observations. Biological Conservation, 253, 108912. https://doi.org/10.1016/j.biocon.2020.108912

Cheng, C., & Ma, Z. (2023). Conservation interventions are required to improve bird breeding performance in artificial wetlands. Biological Conservation, 278, 109872. https://doi.org/10.1016/j.biocon.2022.109872

Coppée, T., Paquet, J.-Y., Titeux, N., & Dufrêne, M. (2022). Temporal transferability of species abundance models to study the changes of breeding bird species based on land cover changes. Ecological Modelling, 473, 110136. https://doi.org/10.1016/j.ecolmodel.2022.110136

Daniels J. M. (2020). Endangered Bali Starlings on the Comeback. https://www.balidiscovery.com/endangered-bali-starlings-on-the-comeback/

Didiharyono, D., Toaha, S., Kusuma, J., & Kasbawati. (2021). Stability analysis of two predators and one prey population model with harvesting in fisheries management. IOP Conference Series: Earth and Environmental Science, 921(1). https://doi.org/10.1088/1755-1315/921/1/012005

Ghosh, B., Zhdanova, O. L., Barman, B., & Frisman, E. Ya. (2020). Dynamics of stage-structure predator-prey systems under density-dependent effect and mortality. Ecological Complexity, 41, 100812. https://doi.org/10.1016/j.ecocom.2020.100812

Ghosh, S., Basir, F. Al, Chowdhury, G., Bhattacharya, S., & Ray, S. (2021). Is the primary helper always a key group for the dynamics of cooperative birds? A mathematical study on cooperative breeding birds. Ecological Modelling, 459, 109728. https://doi.org/10.1016/j.ecolmodel.2021.109728

Grüne, L. (2020). Mathematical Control Theory. http://num.math.uni-bayreuth.de

Hauksdóttir, A. S., & Sigurðsson, S. P. (2020). Proving Routh’s Theorem using the euclidean algorithm and cauchy’s theorem. IFAC-PapersOnLine, 53(2), 4460–4467. https://doi.org/10.1016/j.ifacol.2020.12.446

Iglesias, P. A., & Ingalls, B. P. (2010). Control Theory and Systems Biology.

Khan, Q. J. A., Al-Lawatia, M., & Al-Senaidi, M. H. M. (2011). Breeding adjustment of small mammals to avoid predation. Computers & Mathematics with Applications, 62(12), 4337–4355. https://doi.org/10.1016/j.camwa.2011.09.054

Markett, C. (2017). An elementary representation of the higher-order Jacobi-type differential equation. Indagationes Mathematicae, 28(5), 976–991. https://doi.org/10.1016/j.indag.2017.06.015

Moudrý, V., Komárek, J., & Šímová, P. (2017). Which breeding bird categories should we use in models of species distribution? Ecological Indicators, 74, 526–529. https://doi.org/10.1016/j.ecolind.2016.11.006

Mouysset, L., Miglianico, M., Makowski, D., Jiguet, F., & Doyen, L. (2016). Selection of Dynamic Models for Bird Populations in Farmlands. Environmental Modeling & Assessment, 21(3), 407–418. https://doi.org/10.1007/s10666-015-9494-y

Ouvrard, R., Mercère, G., Poinot, T., Jiguet, F., & Mouysset, L. (2019). Dynamic models for bird population—A parameter-varying partial differential equation identification approach. Control Engineering Practice, 91, 104091. https://doi.org/10.1016/j.conengprac.2019.07.009

Pramatana, F., Hernowo, J. B., & Prasetyo, L. B. (2022a). Population and Habitat Suitability Index Model of Bali Starling (Leucopsar rothschildi) in West Bali National Park. Jurnal Sylva Lestari, 10(1), 26-38. https://doi.org/10.23960/jsl.v10i1.535

Pramatana, F., Hernowo, J. B., & Prasetyo, L. B. (2021b). Effects of Human Factors in The Existance of Bali Starling (Leucopsar rothschildi) Through Geographic Information System Approach In West Bali National Park and Nusa Penida Bali. Media Konservasi, 26(2), 118-127. https://doi.org/10.29244/medkon.26.2.118-127

Rana, S., Bhattacharya, S., & Samanta, S. (2022). Spatiotemporal dynamics of Leslie–Gower predator–prey model with Allee effect on both populations. Mathematics and Computers in Simulation, 200, 32–49. https://doi.org/10.1016/j.matcom.2022.04.011

Şekercioğlu, Ç. H. (2012). Promoting community-based bird monitoring in the tropics: Conservation, research, environmental education, capacity-building, and local incomes. Biological Conservation, 151(1), 69–73. https://doi.org/10.1016/j.biocon.2011.10.024

Subrata, I. M., Suka Widana, I. N., & Mandur, Y. (2017). Optimalisasi Pelestarian Curik Bali (Leucopsar rothschildi) di Pusat Pembinaan Populasi Curik Bali Tegal Bunder Taman Nasional Bali Barat (TNBB). https://doi.org/10.5281/ZENODO.3532307

Yang, J., Hou, X., & Li, Y. (2022). A Generalization of Routh–Hurwitz Stability Criterion for Fractional-Order Systems with Order α ∈ (1, 2). Fractal and Fractional, 6(10), 557. https://doi.org/10.3390/fractalfract6100557




DOI: https://doi.org/10.31764/jtam.v7i4.16313

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 G. K. Gandhiadi, Ketut Jayanegara, Komang Dharmawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: