Drug-Drug Interactions Pharmacokinetic Models with Extravascular Administration: Estimation of Elimination and Absorption Rate Constants
Abstract
One and two-compartment pharmacokinetic models with drug-drug interactions are proposed. Two drugs are given orally simultaneously, so that their interaction affects the drug absorption process and subsequently the elimination process. The aim of this paper is to estimate the elimination and absorption rate constants by evaluating the data set of time and drug concentration. This data set was divided into two time phases: large-time elimination phase to estimate the elimination rate constant, and small-time absorption phase to estimate the absorption rate constant. Since the models are nonlinear, the Taylor expansion is employed to so that the Wagner-Nelson and the Loo-Riegelman methods can be used for estimation. Finally, simulations were performed using the generated arbitrary data set of time and concentration, instead of an actual data set, to derive the solution of drug concentration concerning time numerically. In these simulations we compared the original parameter values with their estimates for the one and two-compartment models, and we concluded that the two-compartment model produced better estimates than the one-compartment model. Qualitatively, the two-compartment model gives smaller drug concentration curve deviations between the original and the estimated curve compared with the one-compartment model.
Keywords
Full Text:
DOWNLOAD [PDF]References
Angstmann, C. N., Erickson, A. M., Henry, B. I., Mcgann, A. V., Murray, J. M., & Nichols, J. A. (2017). Fractional order compartment models. SIAM Journal on Applied Mathematics, 77(2). https://doi.org/10.1137/16M1069249
Angstmann, C. N., Henry, B. I., Jacobs, B. A., & McGann, A. V. (2019). An explicit numerical scheme for solving fractional order compartment models from the master equations of a stochastic process. Communications in Nonlinear Science and Numerical Simulation, 68. https://doi.org/10.1016/j.cnsns.2018.07.009
Babak, H., Mohsen, A., & Zokaei, H. (2019). Investigation of drug-drug interactions status, in University-Based Pharmacies, in Lorestan, Iran. Revista Latinoamericana de Hipertension, 14(3).
http://saber.ucv.ve/ojs/index.php/rev_lh/article/view/16762
Deng, T., & Li, K. (2017). Hybrid invasive weed optimization algorithm for parameter estimation of pharmacokinetic model. International Journal of Pattern Recognition and Artificial Intelligence, 31(3). https://doi.org/10.1142/S0218001417590030
Egbelowo, O. (2018). Nonlinear Elimination of Drugs in One-Compartment Pharmacokinetic Models: Nonstandard Finite Difference Approach for Various Routes of Administration. Mathematical and Computational Applications, 23(2). https://doi.org/10.3390/mca23020027
Egbelowo, O., Harley, C., & Jacobs, B. (2017). Nonstandard finite difference method applied to a linear pharmacokinetics model. Bioengineering, 4(2). https://doi.org/10.3390/bioengineering4020040
Gibaldi, M., & Perrier D. (1982). Pharmacokinetics (Drug and Pharmaceutical Sciences). CRC Press. https://www.routledge.com/Pharmacokinetics/Gibaldi-Perrier/p/book/9780824710422
Giordano, F. R., Fox, W. P., & Horton, S. B. (2014). A First Course in Mathematical Modeling. (Fifth Edition). In Belmont: Brooks/Cole.
Gössling, W. (1993). Handbook of Basic Pharmacokinetics. Von Wolfgang A. Ritschel. 4th edition 1992. 588 pages. Paperbound. DM 82,—. ISBN 3-7692-1547-8 (DAV K). Pharmazie in Unserer Zeit, 22(3). https://doi.org/10.1002/pauz.19930220327
Hasnain, H., Ali, H., Zafar, F., Sial, A. A., Hameed, K., Shareef, H., Mallick, N., Tariq, A., & Fatima, R. (2017). Drug-Drug Interaction; Facts And Comparisons With National And International Bentch Marks. A threat more than a challenge for patient safety in clinical and economic scenario. The Professional Medical Journal, 24(03). https://doi.org/10.17957/tpmj/17.3670
Hedaya, M. A. (2012). Basic Pharmacokinetics. https://doi.org/10.1177/875512250702300612
Kennedy-Dixon, T. G., Gossell-Williams, M., Hall, J., & Anglin-Brown, B. (2015). The prevalence of major potential drug-drug interactions at a university health centre pharmacy in Jamaica. Pharmacy Practice, 13(4). https://doi.org/10.18549/PharmPract.2015.04.601
Khanday, M. A., Rafiq, A., & Nazir, K. (2017). Mathematical models for drug diffusion through the compartments of blood and tissue medium. Alexandria Journal of Medicine, 53(3). https://doi.org/10.1016/j.ajme.2016.03.005
Loo, J. C. K., & Riegelman, S. (1968). New method for calculating the intrinsic absorption rate of drugs. Journal of Pharmaceutical Sciences, 57(6). https://doi.org/10.1002/jps.2600570602
Mahmood, I. (2004). Estimation of absorption rate constant (ka) following oral administration by Wagner-Nelson, Loo-Riegelman, and Statistical moments in the presence of a secondary peak. Drug Metabolism and Drug Interaction, 20(1-2). https://doi.org/10.1515/dmdi.2004.20.1-2.85
Mtshali, S., & Jacobs, B. A. (2023). On the Validation of a Fractional Order Model for Pharmacokinetics Using Clinical Data. Fractal and Fractional, 7(1). https://doi.org/10.3390/fractalfract7010084
Neves, L. M. B., Castro Silva, L. de, de Melo, M. T. B., Silva Nobre, Y. V., Paulino, E. T., Nogueira Ribeiro, Ê. A., Rodrigues, C. F. de S., & Rodrigues, A. K. B. F. (2022). Drug Interactions Pharmacology: A Narrative Review. American Journal of Pharmacology and Toxicology, 17(1). https://doi.org/10.3844/ajptsp.2022.27.36
Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., De Sarro, G., & Gallelli, L. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. In Journal of Research in Medical Sciences (Vol. 18, Issue 7).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897029/
Qiao, Y., Xu, H., & Qi, H. (2021). Numerical simulation of a two-compartmental fractional model in pharmacokinetics and parameters estimation. Mathematical Methods in the Applied Sciences, 44(14). https://doi.org/10.1002/mma.7511
Rodrigo, M. (2022). A Laplace transform approach to direct and inverse problems for multi-compartment models. European Journal of Applied Mathematics. https://doi.org/10.1017/S0956792522000055
Sa’adah, N., Widodo, A. M., & Indarsih. (2020). Drug elimination in two-compartment pharmacokinetic models with nonstandard finite difference approach. IAENG International Journal of Applied Mathematics, 50(2). https://www.iaeng.org/IJAM/issues_v50/issue_2/IJAM_50_2_25.pdf
Sanaka, M., Yamamoto, T., Ishii, T., & Kuyama, Y. (2004). The Wagner-Nelson method can generate an accurate gastric emptying flow curve from C02 data obtained by a 13C-labeled substrate breath test. Digestion, 69(2). https://doi.org/10.1159/000077391
Sánchez-Dengra, B., González-García, I., González-Álvarez, M., González-Álvarez, I., & Bermejo, M. (2021). Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 158. https://doi.org/10.1016/j.ejpb.2020.11.009
Savva, M. (2021). A Mathematical Treatment of Multiple Intermittent Intravenous Infusions in a One-Compartment Model. Computer Methods and Programs in Biomedicine, 205. https://doi.org/10.1016/j.cmpb.2021.106103
Savva, M. (2022). Real-Time Analytical Solutions as Series Formulas and Heaviside off/on Switch Functions for Multiple Intermittent Intravenous Infusions in One- and Two-Compartment Models. Journal of Biosciences and Medicines, 10(01). https://doi.org/10.4236/jbm.2022.101012
Shargel L, Wu-Pong S, Y. A. eds. (2022). Applied Biopharmaceutics & Pharmacokinetics, 6e. McGraw Hill. https://accesspharmacy.mhmedical.com/content.aspx?bookid=513§ionid=41488016
Siva Rama Krishna Reddy, V., & Narayan, K. L. (2019). The concentration of digoxin after intravenous and oral administration studied by a two-compartment model. Letters in Biomathematics, 6(2). https://doi.org/10.1080/23737867.2019.1653233
Snyder, B. D., Polasek, T. M., & Doogue, M. P. (2012). Drug interactions: Principles and practice. Australian Prescriber, 35(3). https://doi.org/10.18773/austprescr.2012.037
Sopasakis, P., Sarimveis, H., Macheras, P., & Dokoumetzidis, A. (2018). Fractional calculus in pharmacokinetics. Journal of Pharmacokinetics and Pharmacodynamics, 45(1). https://doi.org/10.1007/s10928-017-9547-8
Wagner, J. G., & Nelson, E. (1963). Per cent absorbed time plots derived from blood level and/or urinary excretion data. Journal of Pharmaceutical Sciences, 52(6), 610–611. https://doi.org/10.1002/jps.2600520629
Wu, X., Chen, M., & Li, J. (2021). Constant infusion case of one compartment pharmacokinetic model with simultaneous first-order and Michaelis–Menten elimination: analytical solution and drug exposure formula. Journal of Pharmacokinetics and Pharmacodynamics, 48(4), 495–508. https://doi.org/10.1007/s10928-021-09740-5
Wu, X., Li, J., & Nekka, F. (2015). Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis–Menten kinetics. Journal of Pharmacokinetics and Pharmacodynamics, 42(2). https://doi.org/10.1007/s10928-015-9407-3
Wu, X., Nekka, F., & Li, J. (2018). Mathematical analysis and drug exposure evaluation of pharmacokinetic models with endogenous production and simultaneous first-order and Michaelis–Menten elimination: the case of single dose. Journal of Pharmacokinetics and Pharmacodynamics, 45(5), 693–705. https://doi.org/10.1007/s10928-018-9599-4
Zeng, Y., Liu, J., Liu, W., Jiang, S., Wang, S., & Cheng, Z. (2020). A New Method for the Estimation of Absorption Rate Constant in Two-Compartment Model by Extravascular Administration. Journal of Pharmaceutical Sciences, 109(5), 1802–1810. https://doi.org/10.1016/j.xphs.2020.01.025
DOI: https://doi.org/10.31764/jtam.v7i4.16479
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Diny Zulkarnaen, Muhammad Syifa Irfani, Elvi Syukrina Erianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: