MICE Implementation to Handle Missing Values in Rain Potential Prediction Using Support Vector Machine Algorithm
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Ahn, H., Sun, K., & Kim, K. P. (2021). Comparison of Missing Data Imputation Methods in Time Series Forecasting. Computers, Materials & Continua, 70(1), 767–779. https://doi.org/10.32604/CMC.2022.019369
Alamoodi, A. H., Zaidan, B. B., Zaidan, A. A., Albahri, O. S., Mohammed, K. I., Malik, R. Q., Almahdi, E. M., Chyad, M. A., Tareq, Z., Albahri, A. S., Hameed, H., & Alaa, M. (2021). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Systems with Applications, 167. https://doi.org/10.1016/J.ESWA.2020.114155
Bartlett, J. W., Carpenter, J. R., Tilling, K., & Vansteelandt, S. (2014). Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics, 15(4), 719–730. https://doi.org/10.1093/BIOSTATISTICS/KXU023
Bondarenko, I., & Raghunathan, T. (2016). Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models. Statistics in Medicine, 35(17), 3007–3020. https://doi.org/10.1002/SIM.6926
Chen, J., Zhang, X., & Gao, Y. (2016). Fault detection for turbine engine disk based on an adaptive kernel principal component analysis algorithm. Http://Dx.Doi.Org/10.1177/0959651816643670, 230(7), 651–660. https://doi.org/10.1177/0959651816643670
Finch, H. (2021). Cite this article: Holmes FW. A Comparison of the Heckman Selection Model, Ibrahim, and Lipsitz Methods for Deal-ing with Nonignorable Missing Data. J Psychiatry Behav Sci, 4(1), 1045. http://meddocsonline.org/
Gaye, B., Zhang, D., & Wulamu, A. (2021). Improvement of Support Vector Machine Algorithm in Big Data Background. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5594899
Hunt, L. A. (2017). Missing Data Imputation and Its Effect on the Accuracy of Classification. International Federation of Classification Societies, 0, 3–14. https://doi.org/10.1007/978-3-319-55723-6_1
Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of Performance of Data Imputation Methods for Numeric Dataset. Applied Artificial Intelligence, 33(10), 913–933. https://doi.org/10.1080/08839514.2019.1637138
Li, C., Li, & Cheng. (2013). Little’s test of missing completely at random. Stata Journal, 13(4), 795–809. https://EconPapers.repec.org/RePEc:tsj:stataj:v:13:y:2013:i:4:p:795-809
Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data. Statistical Analysis with Missing Data, 1–449. https://doi.org/10.1002/9781119482260
Luengo, J., García, S., & Herrera, F. (2012). On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowledge and Information Systems, 32(1), 77–108. https://doi.org/10.1007/S10115-011-0424-2/METRICS
Luo, X. (2021). Efficient English text classification using selected Machine Learning Techniques. Alexandria Engineering Journal, 60(3), 3401–3409. https://doi.org/10.1016/J.AEJ.2021.02.009
Mera-Gaona, M., Neumann, U., Vargas-Canas, R., & López, D. M. (2021). Evaluating the impact of multivariate imputation by MICE in feature selection. PLOS ONE, 16(7), e0254720. https://doi.org/10.1371/JOURNAL.PONE.0254720
Navin J R, M., & R, P. (2016). Performance Analysis of Text Classification Algorithms using Confusion Matrix. International Journal of Engineering and Technical Research (IJETR), 6(4), 75-8. www.erpublication.org
Nguyen, C. D., Carlin, J. B., & Lee, K. J. (2017). Model checking in multiple imputation: An overview and case study. Emerging Themes in Epidemiology, 14(1), 1–12. https://doi.org/10.1186/S12982-017-0062-6/TABLES/5
Rouzinov, S., & Berchtold, A. (2022). Regression-Based Approach to Test Missing Data Mechanisms. Data 2022, Vol. 7, Page 16, 7(2), 16. https://doi.org/10.3390/DATA7020016
Santos, A. E. M., Lana, M. S., & Pereira, T. M. (2021). Evaluation of machine learning methods for rock mass classification. Neural Computing and Applications, 34(6), 4633–4642. https://doi.org/10.1007/S00521-021-06618-Y
Stewart, T. G., Zeng, D., & Wu, M. C. (2018). Constructing support vector machines with missing data. Wiley Interdisciplinary Reviews: Computational Statistics, 10(4), e1430. https://doi.org/10.1002/WICS.1430
Triguero, I., García-Gil, D., Maillo, J., Luengo, J., García, S., & Herrera, F. (2019). Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(2), e1289. https://doi.org/10.1002/WIDM.1289
Vijayarajeswari, R., Parthasarathy, P., Vivekanandan, S., & Basha, A. A. (2019). Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement, 146, 800–805. https://doi.org/10.1016/J.MEASUREMENT.2019.05.083
Wissler, A., Blevins, K. E., & Buikstra, J. E. (2022). Missing data in bioarchaeology II: A test of ordinal and continuous data imputation. American Journal of Biological Anthropology, 179(3), 349–364. https://doi.org/10.1002/AJPA.24614
Xu, C., Tannant, D. D., Zheng, W., & Liu, K. (2020). Discrete element method and support vector machine applied to the analysis of steel mesh pinned by rockbolts. IJRMM, 125, 104163. https://doi.org/10.1016/J.IJRMMS.2019.104163
Zhai, R., & Gutman, R. (2022). A Bayesian Singular Value Decomposition Procedure for Missing Data Imputation. https://doi.org/10.6084/M9.FIGSHARE.20405770.V1
Zhang, H., Zhang, L., & Jiang, Y. (2019). Overfitting and Underfitting Analysis for Deep Learning Based End-to-end Communication Systems. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). https://doi.org/10.1109/WCSP.2019.8927876
Zhang, Z. (2016). Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals of Translational Medicine, 4(2). https://doi.org/10.3978/J.ISSN.2305-5839.2015.12.63
DOI: https://doi.org/10.31764/jtam.v7i4.16699
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Aina Latifa Riyana Putri, Bayu Surarso, Titi Udjiani SRRM
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: