Platelet Modeling in DHF Patients Using Local Polynomial Semiparametric Regression on Longitudinal Data

Tiani Wahyu Utami, Nur Chamidah, Toha Saifudin

Abstract


Regression analysis is one of the statistical methods used to model the relationship between response variables and predictor variables. Semiparametric regression is a combination of parametric and nonparametric regression. The estimator used in estimating the semiparametric regression model in this research is the Local Polynomial. Longitudinal data can be found in the health sector, including dengue hemorrhagic fever (DHF) data. The laboratory criteria for indication of DHF is thrombocytopenia. This research aims to obtain platelets model for DHF patients that can be used for forecasting so that it is hoped that it can provide information to the medical team in treating DHF patients. The estimated model used is Local Polynomial semiparametric regression on longitudinal data. The response variables in this research were platelets of DHF patients, which were influenced by hemoglobin as parametric predictor variable and examination time while hospitalized as nonparametric predictor variable. In the local polynomial regression model, it is necessary to select the optimal bandwidth and polynomial order method, GCV. The optimum bandwidth selection based on the GCV method obtained is 1.5 and polynomial order of 2, then applied to DHF patient platelet data, producing an estimated local polynomial semiparametric regression model that follows the actual data pattern. Modeling the platelets of DHF patients obtained using a local polynomial estimator resulted in an R2 value of 84.25% and MAPE of 4.5%, indicating highly accurate forecasting, so it can be concluded that the resulting model is better at predicting.

Keywords


Semiparametric Regression; Polynomial Local; Longitudinal Data; Platelets; DHF.

Full Text:

DOWNLOAD [PDF]

References


Alzeredo, E. L., Monteiro, R. Q., Pinto, L. M. O. (2015). Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators, Mediators of Inflammation, vol. 2015, Article ID 313842, 16 pages. doi: https://doi.org/10.1155/2015/313842.

Aydın, D., Günerib, Ö.İ., Fitc, A. (2016). Choice of Bandwidth for Nonparametric Regression Models using Kernel Smoothing: A Simulation Study, International Journal of Sciences: Basic and Applied Research (IJSBAR), Volume 26, No 1, pp 47-61. https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/5386/2773.

Budiantara, I.N., Ratnasari, V., Ratna, M. and Zain, I. (2015). The combination of spline and kernel estimator for nonparametric regression and its properties. Applied Mathematical Sciences. 9(122) pp. 6083-6094. DOI: https://doi.org/10.12988/ams.2015.58517.

Chamidah, N. and Rifada, M. (2016). Local linear estimator in bi-response semiparametric regression model for estimating median growth charts of children Far East. Journal of Mathematical Sciences. Vol. 99 (8), pp. 1233-1244. http://dx.doi.org/10.17654/MS100091433.

Darnah, M I Utoyo, Chamidah, N. (2019). Modeling of Maternal Mortality and Infant Mortality Cases in East Kalimantan using Poisson Regression Approach Based on Local Linear Estimator, IOP Conference Series: Earth and Environmental Science, 243 012023. https://iopscience.iop.org/article/10.1088/1755-1315/243/1/012023/pdf.

Faridah, I.N., Dania, H., Chen, Y.-H., Supadmi, W., Purwanto, B.D., Heriyanto, M.J., Aufa, M.A., Chang, W.-C. (2022). Perwitasari, D.A. Dynamic Changes of Platelet and Factors Related Dengue Haemorrhagic Fever: A Retrospective Study in Indonesian. Diagnostics, 12(4), 950. DOI: https://doi.org/10.3390/diagnostics12040950.

Fitriyani, N., Hadijati, M., Harsyiah, L., Sauri, M.S. (2021). Mixed Truncated Spline and Kernel Nonparametric Regression Model on Population Growth Rate in West Nusa Tenggara Province, IOP Conference Series: Materials Science and Engineering, 1115 012054. DOI: https://doi.org/10.1088/1757-899X/1115/1/012054.

Hair, Jr., Joseph F., et. al. (2011). Multivariate Data Analysis. Fifth Edition. New Jersey: PrenticeHall, Inc.

Hidayah, N., Iskandar, Abidin, Z. (2017). Prevention of Dengue Hemorrhagic Fever (DHF) Associated with the Aedes aegypti Larvae Presence based on the Type of Water Source, THE JOURNAL OF TROPICAL LIFE SCIENCE, Vol. 7, No. 2, pp. 115 -120. DOI: https://doi.org/10.11594/jtls.07.02.05.

Hidayati L, Chamidah N. and Budiantara I. N. (2019). Spline Truncated Estimator in Multiresponse Semiparametric Regression Model for Computer based National Exam in West Nusa Tenggara. IOP Conf. Series: Materials Science and Engineering. 546 052029. doi: https://doi.org/10.1088/1757-899X/546/5/052029.

Islamiayati, A., Fatmawati, Chamidah, N. (2019). Ability of Covariance Matrix in Bi-Response Multi-Predictor Penalized Spline Model Through Longitudinal Data Simulation. International Journal of Academic and Applied Research (IJAAR), 3(3), 8-11 ISSN: 2000-005X. http://ijeais.org/wp-content/uploads/2019/03/IJAAR190302.pdf.

Jayashree, K., Manasa, G.C., Pallavi, P. et al. (2011). Evaluation of Platelets as Predictive Parameters in Dengue Fever. Indian Journal of Hematology and Blood Transfusion, vol. 27, pp 127–130. https://doi.org/10.1007/s12288-011-0075-1.

Laome, L., Budiantara, I.N., Ratnasari, V. (2023). Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression, Mathematics, 11, 152. https://doi.org/10.3390/math11010152.

Lestari, B. and Chamidah, N. (2020), Estimating Regression Function of Multi-Response Semiparametric Regression Model Using Smoothing Spline, Journal of Southwest Jiaotong University, 55(5), pp 1-9. http://www.jsju.org/index.php/journal/article/view/737/731.

Lewis, C.D. (1982). International and Business Forecasting Methods. Butterworths, London.

Nidhomuddin, Chamidah, N., Kurniawan, A. (2019). Admission Test Modelling of State Islamic College in Indonesia Using Local Linear for Bivariate Longitudinal Data, IOP Conference Series: Materials Science and Engineering, 546 052047, doi: https://doi.org/10.1088/1757-899X/546/5/052047.

Nidhomuddin, Chamidah, N., Kurniawan, A. (2022). Confidence Interval of The Parameter on Multipredictor Biresponse Longitudinal Data Analysis Using Local Linear Estimator for Modeling of Case Increase and Case Fatality Rates Covid-19 In Indonesia, A Theoretical Discussion. Commun. Math. Biol. Neurosci. (23), pp.1-12. ISSN: 2052-2541. doi: https://doi.org/10.1088/1742-6596/1764/1/012076.

Ojha, A., Nandi, D., Batra, H., Singhal, R., Annarapu, G.K., Bhattacharyya, S., Seth, T., Dar, L., Medigeshi, G.R., Vrati, S., et al. (2017). Platelet activation determines the severity of thrombocytopenia in dengue infection. Scientific Reports, volume 7, Article number: 41697. https://doi.org/10.1038/srep41697.

Prawanti, D. D., Budiantara, I. N., and Purnomo, J. D. T. (2019). Parameter Interval Estimation of Semiparametric Spline Truncated Regression Model for Longitudinal Data, Journal IOP Conference Series: Materials Science and Engineering, Volume 546, No 052053, 9th Annual Basic Science International Confrence IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/546/5/052053.

Ramli, M., Ratnasari, V., Budiantara, I. N. (2020). Estimation of Matrix VarianceCovariance on Nonparametric Regression Spline Truncated for Longitudinal Data, Journal of Physics: Conference Series, 1562 012014. DOI: https://doi.org/10.1088/1742-6596/1562/1/012014

Setiabudi, I., Hermawan, I M A., (2021). Planning for alternative road development connecting East Balikpapan - North Balikpapan, IOP Conference Series: Earth and Environmental Science, 879 012017. DOI: https://doi.org/10.1088/1755-1315/879/1/012017

Setyawati, M., Chamidah, N. and Kurniawan, A. (2021). Modelling Scholastic Aptitude Test of State Islamic Colleges in Indonesia using Least Square Spline Estimator in Longitudinal Semiparametric Regression, Journal of Physics Conference Series, 1764 012077. doi: https://doi.org/10.1088/1742-6596/1764/1/012077

Side, S., Sanusi, W., Maksum, M W. (2020). Model Regresi Semiparametrik Spline untuk D ata Longitudinal pada Kasus Demam Berdarah Dengue di Kota Makassar. Journal of Mathematics, Computations, and Statistics, Vol 3 No 1. https://doi.org/10.35580/jmathcos.v3i1.19181

Silitonga, P., Dewi, B. E., Bustamam, A. et al. (2020). Correlation between laboratory characteristics and clinical degree of dengue as an initial stage in a development of machine learning predictor program, AIP Conference Proceedings, 2264, 030008. https://doi.org/10.1063/5.0023932

Syumarta, Y., Hanif, A.M., Rustam, E. (2014). Hubungan Jumlah Trombosit, Hematokrit dan Hemoglobin dengan Derajat Klinik Demam Berdarah Dengue pada Pasien Dewasa di RSUP. M. Djamil Padang. Jurnal Kesehatan Andalas. Vol 3 No 3. DOI: https://doi.org/10.25077/jka.v3i3.187

Utami, T.W., Prahutama, A., Karim, A., Achmad A R. F. (2019). Modelling rice production in Central Java using Semiparametric Regression of Local Polynomial Kernel. Journal of Physics: Conference Series, Volume 1217, The 8th International Seminar on New Paradigm and Innovation on Natural Science and Its Application 26 September 2018, Central Java, Indonesia. DOI: https://doi.org/10.1088/1742-6596/1217/1/012108

Wu, H., and Zhang, J.T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis. John Wiley & Sons, Inc., Canada. ISB




DOI: https://doi.org/10.31764/jtam.v8i1.17427

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Tiani Wahyu Utami, Nur Chamidah, Toha Saifudin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: