Identifying Factors Affecting Waste Generation in West Java in 2021 Using Spatial Regression

Anik Djuraidah, Akbar Rizki, Tony Alfan

Abstract


Responsible consumption and production is the 12th of the seventeen SDGs which is difficult for developing countries to achieve due to high waste production. Indonesia is the second largest producer of food waste in the world. Garbage is solid waste generated from community activities. Population density is an indicator to estimate the amount of waste generated in an area. The choice of West Java Province as the research area is based on the fact that this Province has the second highest population density in Indonesia. This study aimed to determine the predictors/factors that influence waste production in the districts/cities of West Java Province. The data used in this study are total waste as a response variable and GRDP (gross domestic product), total spending per capita, average length of schooling, literacy rate, number of MSMEs (micro, small, and medium enterprises), and several recreational and tourism places, the number of people's markets, and the number of restaurants as predictors. The methods used in this research are spatial autoregressive regression/SAR, spatial Lag-X/SLX, and spatial Durbin/SDM. The results of this study show that the SAR is the best model with the lowest BIC (74.442) and pseudo-R-squared (0.7934). Factors that significantly affect total waste production are literacy levels, the number of MSMEs, the number of traditional markets, and the number of recreational and tourist places.

 


Keywords


Spatial regression; Waste production; West Java.

Full Text:

DOWNLOAD [PDF]

References


Adekayanti, B. R. (2023). Investigating Multidimensional Child Poverty in Indonesia : A Spatial Regression Approach. IPB University. http://repository.ipb.ac.id/handle/123456789/115956

Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open Journal of Statistics, 05(07), 754–767. https://doi.org/10.4236/ojs.2015.57075

Arbia, G. (2006). Spatial Econometrics. In Springer (1st Editio). Springer. http://link.springer.com/content/pdf/10.1007/978-3-662-04853-5.pdf

Badan Pusat Statistik. (2021). Kepadatan Penduduk menurut Provinsi (jiwa/km2), 2019-2021. https://www.bps.go.id/indicator/12/141/1/kepadatan-penduduk-menurut-provinsi.html

Burruss, G. W., & Bray, T. M. (2005). Confidence Intervals. Encyclopedia of Social Measurement, 455–462. https://doi.org/https://doi.org/10.1016/B0-12-369398-5/00060-8

Chen, D., Lu, X., Hu, W., Zhang, C., & Lin, Y. (2021). How urban sprawl influences eco-environmental quality: Empirical research in China by using the Spatial Durbin model. Ecological Indicators, 131, 108113. https://doi.org/10.1016/j.ecolind.2021.108113

Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280–1287. https://doi.org/10.1016/j.enconman.2010.09.025

Djuraidah, A. (2020). Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial, dan Ekonomi. PT Penerbit IPB Press.

Dubin, R. (2009). Spatial Weights. In The SAGE Handbook of Spatial Analysis. SAGE Publications, Ltd. https://doi.org/10.4135/9780857020130

Elhorst, J. P. (2014). Spatial Panel Models. Handbook of Regional Science, 1637–1652. http://link.springer.com/10.1007/978-3-642-23430-9

Fatimah, Y. A., Govindan, K., Murniningsih, R., & Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. Journal of Cleaner Production, 269, 122263. https://doi.org/10.1016/j.jclepro.2020.122263

Feng, Z., & Chen, W. (2018). Environmental regulation, green innovation, and industrial green development: An empirical analysis based on the spatial Durbin model. Sustainability (Switzerland), 10(1), 223. https://doi.org/10.3390/su10010223

Griffith, D. A., & Anselin, L. (1989). Spatial Econometrics: Methods and Models. In Economic Geography 65( 2),160. https://doi.org/10.2307/143780

Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics (5th Editio). McGraw-Hill/Irwin.

Karim, U. N., Lubis, E., & Dewi, A. (2022). Hubungan Pengelolaan Sampah Rumah Tangga terhadap Status Kesehatan Penyakit Menular. NERS Jurnal Keperawatan, 18(1), 26. https://doi.org/10.25077/njk.18.1.26-36.2022

LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. In Introduction to Spatial Econometrics. https://doi.org/10.1111/j.1467-985x.2010.00681_13.x

Prajati, G., Damanhuri, T. P., & Rahardyan, B. (2015). Pengaruh Faktor-Faktor Ekonomi Dan Kependudukan Terhadap Timbulan Sampah Di Ibu Kota Provinsi Jawa Dan Sumatera. Jurnal Tehnik Lingkungan, 21(1), 39–47. https://doi.org/10.5614/jtl.2015.21.1.5

Prajati, G., & Pesumay, A. J. (2019). Analisis Faktor Sosiodemografi dan Sosioekonomi Terhadap. Jurnal Rekayasan Sipil Dan Lingkungan, 3(1), 8–16. https://jurnal.unej.ac.id/index.php/JRSL/article/view/8721

Sarasati, Y., Azizah, R., Zuhairoh, Z. A., Sulistyorini, L., Prasasti, C. I., & Latif, M. T. (2021). Analysis of Potential Waste-to-Energy Plant in Final Waste Disposal Sites iIn Indonesia Towards SDGs 2030 (A Literature Review). Jurnal Kesehatan Lingkungan, 13(1), 24. https://doi.org/10.20473/jkl.v13i1.2021.24-34

The Economist Intelligence Unit. (2021). Global Food Security Index 2021; The 10-year anniversary. The Global Food Security Index (GFSI) Is the Preeminent Source of Intelligence on the Drivers of Global Food Security. Developed by Economist Impact and Supported by Corteva Agriscience, It Evaluates Food Security in 113 Countries across Four Key Pillars:, 47. https://my.corteva.com/GFSI?file=ei21_gfsir




DOI: https://doi.org/10.31764/jtam.v8i2.19664

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anik Djuraidah, Akbar Rizki, Tony Alfan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: